한국해군과학기술학회
[ Article ]
Journal of the KNST - Vol. 5, No. 1, pp.38-46
ISSN: 2635-4926 (Print)
Print publication date 31 Mar 2022
Received 03 Jan 2022 Revised 08 Feb 2022 Accepted 22 Mar 2022
DOI: https://doi.org/10.31818/JKNST.2022.03.5.1.38

강화학습 기반 해상에서 UAV의 함상 자율착륙을 위한 경로계획

박한석1, * ; 방효충2
1해군 대위/KAIST 항공우주공학과 석사과정
2KAIST 항공우주공학과 교수
Reinforcement Learning Based Path Planning for Autonomous Shipboard Landing of UAV in Maritime
Hanseok Park1, * ; Hyochoong Bang2
1Lieutenant, ROK Navy/M.S. course student, Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology
2Professor, Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology

Correspondence to: *Han-Seok Park Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea E-mail: intoto6@kaist.ac.kr

© 2022 Korea Society for Naval Science & Technology

초록

본 논문에서는 해상에서 UAV의 함상착륙을 위한 접근 및 착륙 과정에서 강화학습에 기반한 경로계획 기법을 제안한다. 제안된 모델은 연속적인 행동영역에 적용이 가능한 대표적인 강화학습 알고리즘인 심층 결정론적 정책 기울기(DDPG) 방식을 이용하여, 이동 장애물에 대한 회피와 함정의 3축 운동을 고려한 경로추종문제를 다루었다. 본 연구의 결과는 시뮬레이션을 통해 보여진다.

Abstract

This paper proposes a path planning model based on reinforcement learning in the process of approaching and landing for shipboard landing of UAV in maritime. The proposed model dealt with the path tracking problem considering avoidance of moving obstacles and triaxial motion of ships, using the deep deterministic policy gradient (DDPG) method, a representative reinforcement learning algorithm applicable to continuous behavioral areas. The results of this study are shown through simulation.

Keywords:

Unmanned Aerial Vehicles, Shipboard Landing, Reinforcement Learning, Path Planning

키워드:

무인 항공기, 함상착륙, 강화학습, 경로계획

References