한국해군과학기술학회
[ Article ]
Journal of the KNST - Vol. 7, No. 2, pp.216-223
ISSN: 2635-4926 (Print)
Print publication date 30 Jun 2024
Received 20 May 2024 Revised 29 May 2024 Accepted 12 Jun 2024
DOI: https://doi.org/10.31818/JKNST.2024.6.7.2.216

군사용 착용형 로봇의 위험관리프로세스 개발 및 적용방안

이혜원1, * ; 현도경2 ; 이동규1 ; 지웅기2
1LIG넥스원 C4ISTAR IPS연구소 선임연구원
2LIG넥스원 C4ISTAR IPS연구소 수석연구원
Development and Application of Risk Management Process for Military Wearable Robots
Hyewon Lee1, * ; Dokyung Hyun2 ; Dongkyu Lee1 ; Woongki Ji2
1Research engineer, C4ISTAR IPS R&D Lab, LIG Nex1
2Chief research engineer, C4ISTAR IPS R&D Lab, LIG Nex1

Correspondence to: *Hyewon Lee C4ISTAR Integrated Product Support R&D Lab, LIG Nex1 255, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea Tel: +82-31-326-9173 Fax: +82-31-326-9001 E-mail: hyewon.lee2@lignex1.com

Ⓒ 2024 Korea Society for Naval Science & Technology

초록

착용형 로봇의 위험상황은 사용자의 안전에 직접적인 영향을 미치므로 장비 개발 초기 단계부터 체계적인 관리가 필요하다. 군사용 착용형 로봇의 경우 개발 초기부터 임무조건, 임무동작 등의 주요 임무계획을 수립한다. 따라서 임무특성에 기반한 위험분석 및 관리가 수행될 필요가 있다. 본 연구는 국제표준 및 미군 규정 등의 위험관리 프로세스을 검토하였으며, 군사용 착용형 로봇에 적용 가능한 위험관리 프로세스를 개발하였다. 프로세스는 (1) 대상장비 정의, (2) 위험상황 식별, (3) 위험성 평가 (4) 위험 통제로 구성된다. 본 연구의 프로세스는 군사용 착용형 로봇의 임무상황별 구체적 위험요인을 분석하기에 용이하며, 개발초기단계에 있는 다양한 착용형 로봇의 위험관리에 활용될 수 있을 것으로 기대된다.

Abstract

Since wearable robots are directly related to the safety of users, systematic safety management is required from the early stages of development. Military wearable robots are developed based on a basic mission plan that includes mission conditions and mission behavior. Therefore, risk analysis and management should be conducted according to the characteristics of the mission. This study reviewed risk management processes from international standards and developed a risk management process that can be applied to military wearable robots. The process is in the following order: (1) Determination of the limits of wearable robots (2) Hazard Identification (3) Risk Estimation and Evaluation (4) Risk Control Strategy. The process in this study is expected to be useful in analyzing missionspecific risk factors for military wearable robots and can be used for risk management of various wearable robots.

Keywords:

Risk Management, Risk Management Process, Risk Control, Military Wearable Robot, Hazard Identification

키워드:

위험관리, 위험관리절차, 위험통제, 군사용 착용형 로봇, 위험식별

References

  • D. H. Kim, “A Study on the Development Direction of Weapon Systems Using Wearable Devices for Future Military Combatants”, J. of the Korea Academia-Ind. cooperation Soc., 2023, Vol. 24, No. 2, pp. 576-582. [https://doi.org/10.5762/KAIS.2023.24.2.576]
  • D. W. Cha, K. T. Lee, and J. E. Kye, “A Study on the Characteristic Method of Wearable Robot by Mission Profile,” J. of Korea Robo. Soc., 2023, Vol. 18, pp. 444-455. [https://doi.org/10.7746/jkros.2023.18.4.444]
  • KOSHIA, “Technical Guidance on Risk Prevention in the Design and Redesign Process (P-120-2012),” 2012.
  • G. J. Lee, Y. G. Lee, and K. H. Chung, “Application of Design for Safety to improve Safety Environment on Construction Site,” J. of Kor. Ins. of Ecol. Arch. and Env., 2018, Vol. 18, No. 5, pp.113-120. [https://doi.org/10.12813/kieae.2018.18.5.113]
  • "Ministry of National Defense, Korea, “Regulation of Total Lifecycle Management,” 2022.
  • C. H. Lee, K. W. Yang, D. I. Park, I. L. Lee, J. S. Kwon, I. H. Choi, S. B. Kim, “A Study on the Risk Identification Methods for Initial and Mass Production Stage of Military Products Using FMEA”, J. of Korean Soc. Qual. Manag., 2014, Vol. 42, No. 3, pp. 311-324. [https://doi.org/10.7469/JKSQM.2014.42.3.311]
  • Department of Defense, “System safety (MIL-STD-882E),” 2012.
  • International Standard, “Safety of Machinery-General Principles for Design–risk Assessment and Risk Reduction (ISO 12100),” 2010.
  • International Standard, “Robots and Robotic Devices Safety Requirements for Personal Care Robots (ISO 13482)”, 2014.
  • H. W. Lee, D. K. Hyun, D. K. Lee, “Estimating the Lifetimes of Harmonic Drives in Military Wearable Robots Through Walking Test Data Analysis,” 2023, J. of Applied Reliability, Vol. 23, No. 2, pp. 186-194. [https://doi.org/10.33162/JAR.2023.6.23.2.186]