한국해군과학기술학회
[ Article ]
Journal of the KNST - Vol. 7, No. 2, pp.232-236
ISSN: 2635-4926 (Print)
Print publication date 30 Jun 2024
Received 11 May 2024 Revised 17 May 2024 Accepted 03 Jun 2024
DOI: https://doi.org/10.31818/JKNST.2024.6.7.2.232

H2O 가스 흡광도의 고압환경 측정기술 개선

전민규*
해군사관학교 기계시스템공학과 조교수
Enhancement of High-pressure Environmental Measurement Technology for H2O Gas Absorbance
Min-Gyu Jeon*
Assistant Professor, Dept. of Mechanical System Engineering, Republic of Korea Naval Academy

Correspondence to: *Min-Gyu Jeon Dept. of Mechanical Engineering, Republic of Korea Naval Academy 1 Jungwon-ro, Jinhae-gu, Changwon-si, Gyungsangnam-do, 51704, Republic of Korea Tel: +82-55-907-5335 E-mail: mgjeon@navy.ac.kr

Ⓒ 2024 Korea Society for Naval Science & Technology

초록

본 연구에서는 광학식 흡광도 측정방법인 TDLAS를 이용하였다. 연소과정을 정확히 이해하기 위해 엔진의 연소실 내부를 측정할 필요가 있다. 연소실 내에서 연소과정을 이해하기 위해서 필수적으로 발생하는 고온 및 고압환경에서의 변화를 계측해야 한다. 이러한 노력으로 우리의 주요 목표는 H2O 가스의 압력 및 온도를 매개변수로 세심하게 조절하여 TDLAS 측정의 정밀도를 높이고자 하였다. 이로서 실험적 데이터를 바탕으로 이론적 데이터의 개선이 가능해 진다.

Abstract

Accurate comprehension of the combustion process necessitates interior measurements of the engine's combustion chamber. Such comprehension mandates measurement of alterations within the chamber's high-temperature and high-pressure environment. Our principal objective was meticulous regulation of H2O gas pressure and temperature to refine the precision of tunable diode laser absorption spectroscopy (TDLAS) measurements. This endeavor enables the enhancement of theoretical data based on empirical findings.

Keywords:

Absorbance, High-temperature, High-pressure, TDLAS

키워드:

흡광도, 고온, 고압, 가변 다이오드 레이저 흡수 분광법

Acknowledgments

본 논문은 2024년 해군사관학교 해양연구소 학술연구과제 연구비의 지원으로 수행된 연구임.

References

  • M. V. Heitor, A. L. N. Moreira, “Thermocouples and Sample Probes for Combustion Studies,” Progress in Energy and Combustion Science, Vol. 19, pp. 259-278, 1993. [https://doi.org/10.1016/0360-1285(93)90017-9]
  • S. Brohez, C. Delvosalle, G. Marlair, “A Two-Thermocouples Probe for Radiation Corrections of Measured Temperature in Compartment Fires,” Fire Safety Journal, Vol. 39, pp. 399-411, 2004. [https://doi.org/10.1016/j.firesaf.2004.03.002]
  • C. S. Kim, S. D. Hong, Y. W. Kim, “Radiation-corrective gas temperature measurement in a circular channel,” WIT Transactions on Engineering Sciences, Vol. 75, pp. 157-167, 2012.
  • N. Dossi, R. Toniolo, A. Pizzariello, E. Carrilho, E. Piccin, S. Battiston, G. Bontempelli, “An Electrochemical Gas Sensor based on Paper Supported Room Temperature Ionic Liquids,” Lab on Chip, Vol. 12, No. 1, pp.153‒158, 2012. [https://doi.org/10.1039/C1LC20663J]
  • W. Wang, C.B. Lim, K. K. Lee, S. S. Yang, “Wireless Surface Acoustic Wave Chemical Sensor for Simultaneous Measurement of CO2 and Humidity,” J. Micro/Nanolith. MEMS MOEMS, Vol. 8, No. 3, paper No. 031306, 2009. [https://doi.org/10.1117/1.3158610]
  • H. Sumizawa, H. Yamada, K. Tonokura, “Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy,” Applied Physics B, Vol. 100, No. 4, pp. 925-931, 2010. [https://doi.org/10.1007/s00340-010-4138-z]
  • T. N. Anderson, R. P. Lucht, S. Priyadarsan, K. Annamalai, J. A. Caton, “In situ measurements of nitric oxide in coal-combustion exhaust using a sensor based on a widely tunable external-cavity GaN diode laser,” Applied Optics, Vol. 46, No. 19, pp. 3946-3957, 2007. [https://doi.org/10.1364/AO.46.003946]
  • J. K. Magnuson, T. N. Anderson, R. P. Lucht, “Application of a diode-laser-based ultraviolet absorption sensor for in situ measurements of atomic mercury in coal-combustion exhaust,” Energy and Fuels, Vol. 22, No. 5, pp. 3029-3036, 2008. [https://doi.org/10.1021/ef800372k]
  • T. Kamimoto, Y. Deguchi, Y. Kiyota, “High temperature field application of two dimensional temperature measurement technology using CT tunable diode laser absorption spectroscopy,” Flow Measurement and Instrumentation, Vol. 46, No. A, pp. 51-57, 2015. [https://doi.org/10.1016/j.flowmeasinst.2015.09.006]
  • D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi, D. H. Doh, “Performance Improvements in Temperature Reconstructions of 2-D Tunable Diode Laser Absorption Spectroscopy (TDLAS),” Journal of Thermal Science, Vol. 25, No. 1, pp. 84-89, 2016. [https://doi.org/10.1007/s11630-016-0837-z]
  • M. G. Jeon, Y. Deguchi, T. Kamimoto, D. H. Doh, G. R. Cho, “Performances of new reconstruction algorithms for CT-TDLAS (computer tomography-tunable diode laser absorption spectroscopy),” Applied Thermal Engineering, Vol. 115, pp. 1148-1160, 2017. [https://doi.org/10.1016/j.applthermaleng.2016.12.060]
  • M. G. Jeon, D. H. Doh, Y. Deguchi, “Measurement enhancement on two-dimensional temperature distribution of Methane-Air premixed flame using SMART algorithm in CT-TDLAS”, Applied Sciences, Vol. 9, No. 22, 4955, 2019. [https://doi.org/10.3390/app9224955]
  • M. G. Jeon, J. W. Hong, D. H. Doh, Y. Deguchi, “A study on two-dimensional temperature and concentration distribution of Propane-Air premixed flame using CT-TDLAS,” Modern Physics Letters B, Vol. 34, No. 7n9, 2040020, 2020. [https://doi.org/10.1142/S0217984920400205]