
폭발 시뮬레이션을 활용한 수소 생산기지 방호벽의 폭발 피해 저감효과 분석에 관한 연구
Ⓒ 2025 Korea Society for Naval Science & Technology
초록
본 논문에서는 수소 생산기지에서 폭발 발생 시 영향범위와 최적의 철근콘크리트 방호벽 두께를 도출하기 위해 ExDAM 3D 폭발 시뮬레이션을 통해 폭발 영향평가를 실시하였다. 영향평가는 크게 3가지 시나리오로 방호벽이 없는 상태, 기존 방호벽이 설치된 상태, 피해 저감목표 달성을 위한 방호벽 두께 도출로 구성하여 진행하였다. 피해 저감목표 설정은 기지 내 2차 폭발 가능성이 있는 시설물에 대하여 피해율이 30 % 미만인 구조적 변형이 없는 표면적인 손상을 뜻하는 Slight 수준(경미한 수준)을 목표로 하였다. 두께 강화 및 반복 시뮬레이션을 통해 방호벽 두께 190 mm 설정 시 기지 내 시설물은 slight 미만의 피해수준을 보였다. 이를 통해 도출된 결과를 바탕으로 군 내에 현재 설치되어 있는 수소 생산기지와 앞으로 설계되어질 수소 생산기지에 대한 함의 및 시사점을 제시하였다.
Abstract
In this Study, in order to derive the range of impact and the optimal thickness of the reinforced concrete protective wall in the event of an explosion at a hydrogen production base, an explosion impact assessment was conducted via ExDAM 3D explosion simulation. The impact assessment was largely carried out in three scenarios: the absence of a protective wall, the installation of an existing protective wall, and the derivation of a protective wall thickness to achieve the damage reduction goal. Setting the damage reduction goal was to set the slope level (minor level), which means surface damage without structural deformation with a damage rate of less than 30% for facilities with a possibility of secondary explosion in the base. When the thickness of the protective wall is set at 190mm through thickness reinforcement and repeated simulation, the facilities in the base showed a damage level less than Slight. Based on the results derived from this, implications for the hydrogen production base currently installed in the military and the hydrogen production base to be designed in the future are presented.
Keywords:
Hydrogen Production Base, Explosion, Protective Wall, Damage Reduction, Explosion Simulation키워드:
수소 생산기지, 폭발, 방호벽, 피해저감, 폭발 시뮬레이션References
- Heo. S. K., A Plan for the Revitalization of the Hydrogen Energy Industry, KIET, Vol.246, 2019, pp. 50-52.
- Moon. J. S., Trends in Safety Technology Development in conjunction with Expansion of Construction of Hydrogen Industry Infrastructure, Collection of Papers at the Korean Institue of Gas, Vol.2020 No.10, 2020, pp. 40-41.
- Park. J. S., Lee. D. H., Study on Supporting local manufacturing development of hydrogen filling station components and hydrogen fuel cell vehicle components, Collection of Papers at the Korean Institue of Gas, Vol.2022 No.5, 2022, p. 212.
- Kim. S. W. et al, Fundamental Study of Explosion Simulation of Hydrogen Gas on Concrete Blast Wall using TNT Equivalent Method, Collection of Papers at the Korean Institue of Gas, Vol.2022 No.5, 2022, p. 113.
- Park. S. B., Kim. J. S., Park. D. J., Investigations of the Installation Situation of Protective Barrier at Domestic Hydrogen Refueling Stations, Collection of Papers at the Korean Institue of Gas, Vol.2022 No.5, 2022, p. 105.
- Han. W. S. et al, A Study on the Prediction and Application of Explosive Accident Damage of Chemical Substances, KOSHA Research report, 2015, pp. 31-37.
- Jeon. I. B., Method for evaluating the safety performance and protection ability of the mobile steel protective wall during the high-explosive ammunition test, Journal of the Korea Academia-Industrial cooperation Society, Vol. 22 No. 6, 2021, pp. 573-576.
-
Kim. E. J. et al, Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea, International Journal of Hydrogen Energy, Vol.38 No. 3, 2013, pp. 1737-1743.
[https://doi.org/10.1016/j.ijhydene.2012.08.079]
- Lee. K. H. et al, Evaluation on Blast Resistance Performance of Reinforced Concrete Wall Strengthened by FRP Sheet, Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.26 No. 5, 2022, pp. 156-159.
- Lee. Y. S., Impact of Explosive Disaster, KFPA, a disaster prevention seminar, 1992, p. 69.