Journal of the

ISSN: 2635-4926

Check for updates

2023; Vol.6, No.4; pp. 465-473

https://doi.org/10.31818/JKNST.2023.12.6.4.465

Received: 2023/11/2 Revised: 2023/11/2 Accepted: 2023/12/2 Published: 2023/12/2

*Corresponding Author:

Hwa-Seob Lee

Tel: +82-42-559-7126 E-mail: hwaseob.lee.photonics@gmail.com

Abstract

본 연구는 비-에르미안의 특이점(EP)를 활용하여 함정 자세 정보를 제공하는 기존의 자이로의 측정 정확도를 향상할 수 있는 방안을 제시하였다. 비-에르미안 시스템이 실수의 고유값을 가지는 *PT* symmetry 조건과 이때의 수렴점(익셉셔널 포인트, exceptional point) 주위에서 외부 자극에 의한 주파수 분리가 기존 에르미안 시스템 대비 제곱근에 비례하여 향상될 수 있음을 모델링하였다. 마지막으로 메타 메터리얼을 자이로 광경로 상에 배치하여 이러한 특이점을 구현함으로써 기존 자이로 대비 측정 정확도가 향상될 수 있음을 모델링을 통해 제시하였다.

In this study, Non-Hermitian system with its spectral degeneracy called as exceptional points (EPs) have been explored for improving the measurement sensitivity of ring layer gyroscopes in a Naval vessel. Special requirements of systems having real eigenvalues in Non-Hermitian systems have been discussed and numerically demonstrated that a frequency splitting can be enhanced by a square root topology near the exceptional point as a perturbation strength increases. As a result, a new ring laser gyroscope utilizing the exceptional point have been suggested and numerically demonstrates that a measurement sensitivity can be enhanced.

Keywords

해군 함정(Naval Vessel), 링 레이저 자이로스코프(Ring Laser Gyroscope), 수학적 모델링(Numerical Modeling), 비에르미안 체계(Non-Hermitian System) 특이점(Exceptional Point)

Acknowledgement

이 논문은 2023년도 한국해군과학기술학회 동계학술대회 발표 논문임.

PT Symmetry의 특이점(EP)을 활용한 군함 자이로스코프 개선 방안

Improved Design of Gyroscope for a Naval Vessel Based on PT Symmetry's Exceptional Point

이화섭*

1해군 소령/해군 작전사령부 7기동전단 서애류성룡함 전투체계정비관

Hwa-Seob Lee*

LCDR/Combat system maintenance officer, Combat System Department, Seoae Ryuseongryong Ship (DDG–993), 7th Fleet Command, Naval Operation Command, ROK Navy

1. 서론

해군 함정이 해상에서 정지 중이거나 기동 중일 때, 정지 또는 기 동 중인 표적에 대해 해성과 같은 정밀유도무기체계 또는 함포와 같은 재래식 무기체계를 이용하여 교전 수행 시 정확하고 신속한 사격 문제 해결이 매우 중요하다. 이때 전투체계는 발사함소와 표 적 간의 상대 운동 및 내·외탄도학적 요소를 고려하여 무기체계의 발사 고각 및 방위를 조절하게 된다[1]. 이 과정에서 함정의 자세변 화에 따른 각 좌표축의 정확한 각 변화량을 측정하는 것은 매우 중 요하며, 새그냑 효과(Sagnac effect)에 기초하는 링 레이저 자이로 스코프는 이러한 각 변화량을 측정하여 전투체계에 제공한다.

미래의 첨단 과학기술 발전에 따른 정밀 유도무기체계 도입을 고 려할 때 함정 자이로에 대한 요구수준은 더욱 높아질 것으로 예상 된다. 현 자이로의 설계 원리상 측정 정확도 향상을 위해서는 직경 (반지름) 증가가 필수적이나, 최초 설계단계에서부터 탑재 대상 무 기체계의 크기와 중량을 엄격히 통제하는 함정에서는 이러한 설계 변경이 매우 제한적이다.

본 논문에서는 기존 링 레이저 자이로의 설계한계에 대해 논의하 고, 최신 양자정보기술 도입을 통해 측정 정확도를 향상시키는 방 안을 제시한다. 이를 위해 이상적인 상태에 있는 시스템의 에르미 안(Hermitian) 조건과 시스템의 불완전성으로 인해 에르미안 조건 을 만족하지 못하는 비(非)에르미안(non-Hermitian) 상태를 논의한다. 또한 이러한 비에르미안 해밀토니 안이 실수 고윳값들을 가질 수 있는 *PT*(parity time) symmetry 조건과 수렴점(degeneracy point)에 대 해 논의한다. 이때의 수렴점은 익셉셔널 포인트(EP, exceptional point)라고 부르며 특이점에서의 고윳 값과 고유벡터(eigenvector)가 붕괴(collapse)되고 외 부 영향에 매우 민감해짐으로써 주파수 분리가 향상 될 수 있음을 모델링을 통해 제시한다. 이러한 특이 점에 대한 이해를 바탕으로 링 레이저 자이로스코프 개선 방안을 제시하고, 모델링을 통해 기존 대비 측 정 민감도가 증가하여 작은 극소량의 변화에 대한 정 확도가 향상될 수 있음을 제시한다.

본 논문은 국내·외 최신 양자 정보기술 중 양자센싱 으로 주목받는 비에르미안 익셉셔널 포인트를 응용 하여 군 최초로 자이로 측정 정확도 향상을 위한 실제 적인 설계방안을 제시하였을 뿐 아니라, 제시된 방안 은 나노기술을 활용하여 크기 제한을 받지 않는다. 또 한, 이러한 자이로 설계개선 방안은 함정에 국한되지 않고 동일하게 자이로의 중량(크기)의 제약을 받는 육군의 전차와 공군의 전투기에도 활용될 경우 전투 력 향상에 크게 기여할 것으로 기대된다.

2. 링레이저자이로스코프(ring laser gyroscopes) 원리

자이로스코프(gyroscope)는 그리스어로 '회전을 본

으킬 때 기준 좌표계로부터 틀어진 변화 정도를 정밀 하게 측정할 수 있는 계측 장비이다[1]. 이러한 자이 로는 해상 플랫폼의 요동(롤, 피치, 요잉) 자세정보와 함께 함께 설치된 가속도계로부터 파악한 자함의 위 치정보를 실시간으로 업데이트하여 전투체계로 제 공한다[2]. 각 좌표축(*x*, *y*, *z*)의 움직이는 속도 및 변 화량을 측정하는 방식에 따라 기계식 자이로와 광학 식 자이로로 구분되며, 광학식 자이로는 기계적 구성 품이 다소 적고 공간 활용 측면과 장비의 총 수명주 기(total lifetime)를 고려할 때 월등히 효율적이므로 해군 함정에서 주로 사용된다.

다'는 의미를 가지며, 탑재된 플랫폼이 자세변화를 일

Fig. 1(a)는 광학식 링 레이저 자이로의 일반적인 구성도를 보여준다. 빛의 간섭 원리에 기초하는 새그 냑 효과를 이용하는 링 레이저 자이로는 빛의 공급원 (source)과 그 빛이 지나가는 광경로 상에 위치하는 다수의 거울(mirror)로 구성된다. 광원으로부터 시작 된 빛은 빔 분배기(beam splitter)에 의해 두 개의 동 일한 파형과 위상을 지닌 진행파로 나누어지고 서로 반대 방향으로(시계방향 또는 반시계 방향) 진행하게 된다(Fig. 1(b), Fig. 1(c) 참조). Fig. 1(b)는 자세 변화 가 없을 때, 즉 광경로가 회전하지 않을 때를 보여주 며 따라서 진행방향과 상관없이 빛이 동일한 시간 동 안 이동한 거리는 동일하다(*t* = *t*+). 이때 Fig. 1(d)는 평면에 평행하게 진행하는 전자기파의 분포도를 나 타낸 것이다. 반면에, Fig. 1(c)에서 함정의 자세변화 로 광경로가 시계방향으로 회전(Ω)하고 있다면, 서

(a) Schematic diagram of ring laser gyroscope, where active medium and three mirrors, photodector are presented

Fig. 1. Principle of ring laser gyroscope(RLG)

(d) Electric field distribution (e) Electric field distribution when frame is not moving when frame is rotating

로 반대 방향으로 진행하는 빛의 동일 시간 동안 이 동하는 거리의 차이로 서로의 위상이 달라 상쇄간섭 이 일어나게 되고, 이때 전자기파 분포도는 정재파 (standing wave)의 형태를 나타내는 것을 확인할 수 있다(Fig. 1(e) 참조). 빛이 이동하는 거리는 아래 식 (1)과같이표현할수있다.

$$a_+ = 2\pi R + \Omega R t_+ \tag{1}$$

여기서, a+는 시계방향으로 진행하는 빛의 총 이동거 리이며(m), Ω 는 각 변화량 또는 회전율(radians/s). *t*₊는이동시간(s)이다.

광경로의 회전 방향과 반대로 진행하는 빛의 총 이 동거리는식(2)와같다.

$$a_{-} = 2\pi R - \Omega R t_{-} \tag{2}$$

상대성원리에 따라 빛은 광경로의 회전율과 상관 없이 일정한 빛의 속도로 진행하기 때문에 빛이 이동 한 전체거리는 각각 vt+, vt_이다. 그러므로 시계방향 과 반시계방향의 빛의 경로 차이는 다음 식 (3)과 같 이 구할 수 있다.

$$\Delta L = v \times (t_{+} - t_{-})$$

$$= 4\pi v R^{2} \Omega \times \left(\frac{1}{v^{2} - \Omega^{2} R^{2}}\right)$$

$$\approx 4\pi R^{2} \Omega \times \left(\frac{1}{v}\right) \text{ (Since } v \gg \Omega R\text{)}$$
(3a)

$$\Delta \phi = \frac{2\pi}{\lambda} (\Delta L) = \frac{8\pi^2 R^2 \Omega}{\upsilon \lambda}$$
(3b)

여기서, v는 빛의 이동 속도이며, 통과하는 매질에 따 라 다르다.

위의 식 (3)에 기반하여 각 변화량은 검출기에서 출 력되는 전압신호의 위상 차이에 의해 측정할 수 있으 나, 이동하는 광경로의 차이가 매우 작아 측정하는 데 어려움을 겪을 수 있다. 예를 들어 반지름이 1 m, 각 변화량이 1e - 3deg/h이면 △L = 4.1e - 16(m)이다.

따라서, 자이로 설계자들은 각 변화량의 측정 용이 성 향상을 위해서 몇 가지 방법을 취할 수 있다. 가장 쉽게는 광경로의 크기를 증가시킬 수 있다. 빛이 통 과하는 광섬유를 많이 감아 총 이동경로를 늘리는 것이다. 하지만 이 방법은 신호감쇄 정도(transmission loss) 길이의 증가에 비례하여 증가되므로 선호 되지 않는다. 또 다른 방법으로 광경로 중간에 공기 가 아닌 다른 매질(예: He-Ne)를 도입하여 측정을 용 이하게 할 수 있다. 진행하는 파의 파장이 각기 다른 매질을 지날 때마다 매질의 굴절율에 따라 달라질 수 있으므로 해당 매질에서의 빛의 속도가 바뀔 수 있다 는 점을 이용한 것이다($v_{eff} = v_{air}/n_{eff}$, 여기서 n_{eff} 는 매 체의 굴절율이다)[2].

우리가 함정 플랫폼 자세 변화로 인한 빛의 간섭현 상을 주파수 차이로 검출기에서 확인한다면, 검출기 에서 확인되는 주파수 차이는 다음 식 (4)와 같다. 여 기서 중요하게 확인되는 것은 식 (3)과 다르게 공명 조건 $(m \times \lambda_{\pm} = L_{\pm})$ 에서 산출된 식 (4)는 시스템 파장 이 일정하다고 가정할 때, 주파수 차이가 광경로의 직경에 비례함을 할 수 있다.

$$f_{\pm} = \frac{mv}{L_{\pm}},$$

$$\Delta f = f_{-} - f_{+} \approx f \frac{\Delta L}{L} (\because L_{+} \times L_{-} \approx L^{2})$$

Since $\Delta L = v(\Delta t) = \frac{4\pi R^{2} Q}{v}$
Thus,

$$\Delta f = \frac{2R\Omega}{\lambda}$$
(4)

하지만, 주파수 차이를 이용하여 각 변화량을 계측 하더라도 기존의 제한사항이었던 설치 자재의 기계 적 불완전성이 야기한 오류는 동일하게 존재한다[3]. 기계적 변수로 발생하는 불완전성의 예로는 이온화 된 가스의 흐름으로 인한 정재파의 이동이나 거울의 불안정성으로 인해 발생한 반사파가 일으키는 주파 수 갇힘(frequency lock-in) 현상, 초깃값(헤딩, 속력) 오차 등이 존재한다[3].

이러한 오차들을 줄이기 위해 자이로 제작사에서 는 다음과 같은 대표적인 방안을 취한다. 처음으로 자 체 자동 제어 알고리즘을 추가하여 오류값을 주기적 으로 평균화하여 출력값을 조정한다. 하지만, 이 방법 은 오류값의 참, 거짓 판단 없이 강제 평준화함에 따 라 추가적인 오류를 야기할 수 있다. 또는, 플랫폼 인 덱싱(platform indexing) 기능을 추가하여 주기적으 로 자이로 센서가 부착된 블록을 몇 개 방위로 회전시 켜 각 변화율을 재측정함으로써 오차값을 보정하게 된다[3]. 하지만, 이 방법은 실시간으로 자이로 신호 를 공급받아 유도탄 정렬을 수행하는 정밀 유도무기

체계 또는 표적을 추적 중인 함포에 무기체계별로 요 구되는 오차범위 이외의 신호 수신 시 유도탄 재정렬 로 인해 교전 준비시간을 추가로 발생시키거나 함포 의 떨림 같은 악영향을 줄 수 있기 때문에 운용자의 판단에 따라 교전 수행 전 해당 기능을 잠시 중단하고 임무를 수행한다. 해당 기능을 운용자의 판단으로 장 시간(10분 이상) 중지하고 교전을 수행할 때, 자이로 오차값 누적으로 인한 명중률 향상에 영향이 있을 수 있다[3]. 따라서, 본 논문에서는 최신 양자역학 기술에 기반하여 자이로 설계를 개선함으로써 측정 정확도 를 원천적으로 향상시킬 수 있는 방안에 주목한다. 이를 위해 *PT* symmetry 개념에 대한 이해를 시작으 로 특이점(EP)에 대한 특징을 간략히 설명하고, 이에 기반하여 자이로 설계를 개선할 수 있는 방안을 제시 한다.

3. PT (parity time) symmetry 원리 해석

$$\hat{H}\psi = i\hbar \frac{d\psi}{dt} \tag{5}$$

위식 (5)는 일반적인 슈레딩거 방정식이며, 여기서 Ĥ는 해밀토니안 연산자로 입자의 전체 에너지를 의 미한다. Fig. 2(a)와 같은 이상적인(ideal) 시스템에서 는 에너지 총 보존의 법칙을 만족하며 이때 해밀토니 안은 에르미안 연산을 만족한다(H[†] = H). 이렇게 외 부와 열교환 없이 차단된 상태에 놓인 해밀토니안은 실수의 고유값(Eigenvalue)를 가지며, 고유벡터는 내적의 곱이 0이므로 서로 직교(orthogonal)하게 된 다[4-5].

반면 Fig. 2(b)는 외부 영향성에 의해 시스템이 지 속적으로 영향을 받는 열린(open) 시스템으로 에르 미안 연산을 만족시키지 않으며 그러므로 이 시스템 은 비에르미안(non-Hermitian) 해밀토니안으로 구 분된다. 이때 해밀토니안은 실수가 아닌 복소수의 고 윳값을 가지며 고유벡터는 더 이상 직교하지 않고 비 스듬하다(skewed). 우리가 실제 세상에서 경험하거 나 목격하는 대부분의 물리학적 현상은 비에르미안 해밀토니안에 의해 묘사된다[5].

PT symmetry는 이러한 비에르미안 해밀토니안이 실수의 고윳값을 가지는 조건을 귀납적으로 증명하 는 과정에서 최초로 등장하게 되었다[6]. *P와 T*는 각 각 parity와 time을 뜻하며, 그러므로 *P* operator는 위치에 관한 함수로, 위치상의 중심점으로부터 다음 의식 (6)을 만족한다.

$$\hat{P}: i \to i, (x, y, z) \to -(x, y, z), p \to -p \tag{6}$$

여기서, *i*는 복소수, (*x*,*y*,*z*)는 좌표계, *p*는 운동량 (momentum)을 뜻한다.

T operator는 시간의 함수이며, 다음 식 (7)을 만족 한다.

$$\hat{T}: i \to -i, (x, y, z) \to (x, y, z), p \to -p \tag{7}$$

이때 위의 식 (6), 식 (7)에 기초하여 *PT* 연산 작용 을 만족하는 해밀토니안에 대한 요구조건을 다음과 같이 증명할 수 있다.

$$(H)\hat{P}\hat{T}\psi(r) = \hat{P}\hat{T}(H)\psi(r) \tag{8}$$

여기서, $H = \left(\frac{p^2}{2} + V(r)\right)$, $\hat{P}\hat{T}\psi(r) = \psi^*(r)$ 이므로 위 의식 (8)에 대입하여 풀게 되면 아래식 (9) - 식 (11)과 같이 정리될 수 있다.

$$\left(\frac{p^2}{2} + V(r)\right)\psi^*(-r)$$

$$= PT\left(\frac{p^2}{2}\psi(r) + V(r)\psi(r)\right)$$
(9)

$$\frac{p^2}{2}\psi^*(-r) + V(r)\psi^*(-r) = \frac{p^2}{2}\psi^*(-r) + V^*(-r)\psi^*(-r)$$
(10)

그러므로 *PT* 작용을 만족하기 위해서는 해밀토니 안의 에너지함수는 다음 식 (11)을 만족해야 한다.

$$V(r) = V^*(-r)$$
 (11)

식 (11)을 만족하는 에너지함수의 실수는 중심축을 기준으로 동등하게 분포하고(even function), 허수 부분은 180도 위상이 뒤집혀서 분포(odd function) 하게 된다. 이러한 양자물리학적 결론을 현실 세계에 서 응용하기 위해서는 주로 광학 체계를 이용하며, 에 너지함수는 광학 시스템에서의 매질의 굴절율에 해 당한다[5-6]. 그러므로 식 (11)에 상응하는 광학 시스 템의 조건은 매질의 굴절율에 대한 요구로 식 (12)를 만족한다.

$$n_{real}(x) = n_{real}(-x), n_{imag}(x) = -n_{imag}(x)$$
 (12)

Fig. 3(a)는 *PT* symmetry를 만족하는 광학 체계에 대한 예이다. 빛의 세기(*S*)는 수직방향으로 진행하고 있으며 두 개의 전송관(waveguide) 중 하나에 모드 커플링 방식에 의해 빛의 전파가 시작된다. 전송관을 구성하는 매질에서 굴절율의 절댓값은 같으나 서로 켤레 복소수를 만족하도록 주어지며 이를 도시하면 Fig. 3(b) 및 Fig. 3(c)와 같다. 이때 진행하는 빛의 세 기는 커플링(coupling) 방정식으로 설명될 수 있다.

$$i\frac{da_1}{dz} + i\frac{r}{2}a_1 + Ka_2 = 0$$
(13)

$$i\frac{da_2}{dz} - i\frac{r}{2}a_2 + Ka_1 = 0 \tag{14}$$

여기서, K는 전송관을 지나는 각 빛의 서로에 대한 커 플링 세기이며, γ/2는 빛이 해당 매질의 전송관을 지

(b) Imaginary part of refractive index distribution among two coupled waveguides

(c) Real part of refractive index distribution among two coupled waveguides

- (e) Imaginary part of eigenvalue evolution depending on the coupling strength and gain/loss differences
- Fig. 3. Dynamics of mode evolution between two coupled waveguides

나면서 얻을 수 있는 이득과 손실을 의미한다. 이때, 고윳값은 아래와 같이 찾을 수 있다.

$$k_{\pm} = k_o \pm \sqrt{K^2 - \left(\frac{r}{2}\right)^2}$$
(15)

위 식(15)에서의 변수는 K와 y이다. 이러한 두 개 의 변수는 광학체계에서 설계자가 쉽게 구성하는 물 질의 성질을 변경(γ)하거나, 전송관의 사이 거리를 조절(K) 함으로써 바꿀 수 있다. Fig. 3(d) - Fig. 3(e) 는 두 개의 변수의 상대적 크기에 따른 고윳값의 역동 적인 변화를 보여준다. 이때, 2K > γ인 조건에서는 PT symmetry의 조건은 보호되고(protected) 파수 는 두 개의 서로 다른 실수를 가지고 허수부분은 나 타나지 않으므로, 빛은 서로의 전송관에 분리되어 존재하나 세기는 동등하게 분포함을 확인할 수 있다. 반대의 조건($2K < \gamma$)에서는 *PT* symmetry의 조건 은 더 이상 만족하지 않고 파수는 복소수가 되어 빛 의 세기는 불균등하게 한쪽은 증폭되거나 감소되는 형태를 나타내게 된다(Fig. 3(e) 참조). 2K = γ일 때 식 (15)의 제곱근은 0으로 수렴하며 빛은 하나의 슈 퍼모드(supermode)를 형성하게 된다. 슈퍼모드는 이 상적인 형태를 가지고, 이때 고유벡터는 식 (16)과 같 이 구할 수 있으며, 2*K* = γ일 때 (즉 EP), 두 개의 고유 벡터는 서로 일치하며 평행하게 됨을 알 수 있다.

(1)
$$2K \ge \gamma$$
:
 $|a_1 \ge \begin{pmatrix} 1\\e^{j\theta} \end{pmatrix},$
 $|a_2 \ge \begin{pmatrix} 1\\-e^{-j\theta} \end{pmatrix},$
 $\theta = \sin^{-1}(r/2K)$
(16a)

(2)
$$2K < \gamma$$
:
 $|a_1\rangle = {1 \choose e^{-j\theta}},$
 $|a_2\rangle = {1 \choose e^{j\theta}},$ (16b)
 $\theta = \cosh^{-1}(r/2K)$

4. Exceptional point(EP)의 특성

지금까지 전송관 두 개의 예를 통해 비에르미안의 특이점(EP)을 어떻게 구현할 수 있는지 알아보았다. 그렇다면 본 절에서는 다른 예를 통해 특이점의 어떤 성질이 양자센서로 활용될 수 있을지에 관하여 설명 하고자 한다.

Fig. 4(a)는 실험 구조를 보여주며, 두 개의 링 안에 는 각각의 전자기장(*a*₁, *a*₂)이 존재한다. *K*의 필드 커 플링 힘과 각 링에서의 손실 변수는 γ1, γ2와 같다. 각 링에서 전자기파의 시간에 따른 변화는 커플링 방정 식(식(17))을 통해 나타낼 수 있다[7].

$$i\frac{d}{dt}\binom{a_1}{a_2} = \begin{bmatrix} \begin{pmatrix} \omega_1 - i\gamma_1 & K \\ K & \omega_2 - i\gamma_2 \end{pmatrix} \end{bmatrix} \binom{a_1}{a_2}$$
(17)

여기서, ω_1 과 ω_2 는 a_1 과 a_2 의 고유 진동수에 해당한다. 위 방정식 식 (17)의 고윳값을 풀면 다음과 같다.

$$\omega_{\pm} = \frac{\omega_1 + \omega_2}{2} - i \frac{(\gamma_1 + \gamma_2)}{2} \pm \sqrt{K^2 (\delta + i\Gamma)^2}$$
(18)

여기서, δ와 Γ는 각각 아래와 같이 표현된다.

$$\delta = \frac{(\omega_1 - \omega_2)}{2},$$

$$\Gamma = \frac{(\gamma_1 - \gamma_2)}{2}$$
(19)

만약 $\gamma_1 = \gamma_2 = 0$ (즉, 링에서의 빛은 손실 없는 이상 적인 상태에 놓여있다)이라면, 고윳값은 항상 실수이 다(식 (20) 참조).

$$\omega_{\pm} = \frac{(\omega_1 + \omega_2)}{2} \pm \sqrt{K^2 + \delta^2} \tag{20}$$

이상적인 체계($\gamma_1 = \gamma_2 = 0$)에서의 고윳값의 변화 를 3차원 그래프로 살펴보면 Fig. 4(b) 및 Fig. 4(c)와 같이 항상 실숫값을 가지며 $K = \delta = 0$ 에서 수렴한다. 이때의 수렴점을 DP(diabolic point)라고 부른다. Fig. 4(b)에서 보듯이 DP를 기준으로 고윳값이 분리 될 때 변수 변화에 대해 고윳값이 1차 선형으로 비례 하여 변화됨을 확인할 수 있다. 이는 사실 식 (20)을 통해 유추할 수 있는데, 각 변수의 변화가 제곱근에 의 해 1차 선형으로 변하기 때문이다.

반면 링 안에서의 전자기장의 손실값(γ₁, γ₂)이 0 이 아닌 일반적인 상황이라면 이때 고윳값은 식 (18) 과 같다. 식 (18)에서 보듯이 고윳값은 대부분 복소수 의 형태를 가질 것이며, 그러므로 서론에서 언급한 바 와 같이 에르미안 작용을 만족하지 않게 된다(H[†] ≠ H). 이러한 비에르미안에서 제곱근이 수렴하는 조건

(EP 조건)을 찾아보면 $\delta = 0, K = \Gamma$ 가 필요충분조건 임을 식 (18)을 통해 알 수 있다. 세 개의 변수 중 Γ = 1로 고정하고 나머지 변수(δ, K)를 변화시키면서 고 윳값의 변화를 살펴보면 Fig. 4(d) 및 Fig. 4(e)와 같 다. 두 개의 고유 평면이 한 곳에서 합쳐지는 것(collapse)을 볼 수 있으며 이때를 특이점(EP)이라고 부 른다. 특이점 주위로 보았을 때 Fig. 4(b)와 다르게 각 변수의 변화량에 대해 고윳값이 제곱근의 함수로 급격하게 변하는 것을 알 수 있다.

EP는 두 개의 평면이 함몰되는 지점으로 외부 변 화에 매우 민감하고, 이를 수학적으로 표현하면 다음 식 (21), 식 (22)와 같다. 식 (21)은 기존 해밀토니안이 EP점에 수렴하도록 임의적으로 맞추어져 있고, 이 때 외부 변화는 모드 커플링에 작용한다고 가정한다. 이때의 고윳값 변화는 식 (22)와 같다.

$$\hat{H}_{tot} = \underbrace{\begin{bmatrix} \omega_1 - i\gamma_1 & K \\ K & \omega_1 - i\gamma_2 \end{bmatrix}}_{\widehat{H_{EP}}} + \underbrace{\begin{bmatrix} 0 & \epsilon \\ \epsilon & 0 \end{bmatrix}}_{H_{Perturbation} \text{ on } K}$$
(21)

 $|\Delta \omega| = 2 \times |\sqrt{\epsilon^2 + 2\epsilon K}|$ (Since $\Gamma = K$)

If $\epsilon \ll 1$,

$$|\Delta\omega| = 2|\epsilon| \left| \sqrt{1 + 2\frac{K}{\epsilon}} \right|$$

$$|\Delta\omega| \simeq 2|\epsilon| \left| \sqrt{2\frac{K}{\epsilon}} \right| \quad \left(\text{Since } 2\frac{K}{\epsilon} \gg 1 \right)$$
(22)

식 (22)를 통해 변화량(ε)이 매우 작을 때 고윳값 변화는 다음 식(23)과 같이 간소화됨을 알 수 있다.

$$|\Delta\omega_{EP}| \sim 2\epsilon \left|\sqrt{\epsilon}\right| \tag{23}$$

따라서 기존 DP에서의 변화량이 1차 선형(|Δω_{DP}| ~ 2ε) 임에 비해 EP에서는 외부 변화(ε)가 매우 작은 양이라고 가정할 때, 급격한 고윳값의 변화가 있음을 알 수 있다. 이러한 성질은 EP가 양자센서로 활용될 수 있는 가능성을 열어주었다[7].

본 절에서는 EP가 어떻게 양자센서로 활용될 수 있 을지 보았다. 다음 절에서는 이러한 EP 특성을 활용 해 자이로를 개선할 수 있는 방안에 대해 알아보겠다.

5. 자이로 개선방안

앞에서 모델링 해석을 통해 비에르미안의 해밀토 니안 역시 적절한 변수 통제를 통해 수렴점을 가질 수 있으며(EP), 이러한 수렴점의 특이성에 의해 외부 자 극에 매우 민감하여 양자센서로 활용될 수 있음을 이 해하였다[7,9]. 본 장에서는 이러한 원리에 기반하여 기존의 자이로 측정 민감도를 향상시키는 방안에 대 해 소개한다.

Fig. 5(a)는 기존 링 레이저 자이로의 구성도를 보여 주고 있다. 서론에서 논의되었던 기존의 링 레이저 자 이로를 구성하고 있는 기계적 부품(예: 거울)의 제작 과 설치과정에서의 예측하지 못한 불완전성에 의한 극소량의 반사파 발생가능성을 무시한다면, 통과파 (transmission)와 반사파(Reflection)는 Fig. 5(a)의 오른쪽 다이어그램과 같다. 이러한 시스템을 수학적 으로 표현하면 아래 식 (24)와 같으며, 각 변화량 정 도는 시계방향과 반시계방향으로 진행하는 빛의 경 로차를 주파수 분리에 따라 검출기에서 확인한다면, 이 값은 식 (24)의 고윳값을 구한 결과와 동일하다 (식 (25) 참조).

$$\omega_{cw(ccw)} = \omega_o \pm \Delta\Omega$$

$$|\Delta\omega| = 2 \times |\Delta\Omega|$$
(25)

Fig. 5(b)는 본 논문에서 제시하는 성능이 개선된 자이로 구성도이다. 비에르미안의 특이점(EP)를 구 현하기 위하여 광경로 상에 특별하게 디자인된 메타 메터리얼(meta-material)을 위치시킴으로써 기존 의 자이로 구성도에 변화를 주었다. 이 메타 메터리얼 은 빛을 흡수하는 물질과 비흡수하는 물질의 얇은 막(thin film)의 반복적 위치를 통한 단위 셀(unit cell)로 이루어져 있다. 이러한 메타 메터리얼은 통과 파는 동일하나 반사파는 설계자가 원하는 방향에 따 라 차이를 가질 수 있으며, 본 논문에서는 시계방향 으로 진행하는 반사파만 소멸되도록 설계된 것으로 가정한다[8]. Fig. 5(b)에서 표현된 시스템을 수학적 으로 표현하면 식 (26)과 같다.

$$\hat{H}_{tot} = \underbrace{\begin{bmatrix} \omega_o & A \\ 0 & \omega_0 \end{bmatrix}}_{\widehat{H_{DP}}} + \underbrace{\begin{bmatrix} \Delta \Omega_{rotation} & \epsilon \\ \epsilon & \Delta \Omega_{rotation} \end{bmatrix}}_{H_{Perturbation}}$$
(26)

여기서 A는 반시계방향에 의한 반사파(reflected field)의 세기이며, 시계방향에 의한 반사파의 세기는 이와 달리 최소화되도록(~0) 설계되었다(EP 시스템).

(b) Improved design of ring laser gryscope, where transmission is identical, reflection is tuned to be non-identical

Fig. 5. Design and performance comparison between original gyroscope and improved gyroscope

Fig. 5(a)와 동일하게 함정 자세에 의한 각 변화량 이 발생할 때 주파수 변화가 초래되고, 메타 메터리얼 의 설계 특이성(즉, 주파수에 따라 다른 반사파를 보 유한다)에 의해 이러한 주파수 변화는 반사파 세기 에 변화를 일으킨다[8]. 따라서, 각 변화량에 의한 변 화를 나타내는 해밀토니안(*H*_{perturbation})을 살펴보면 기존의 링 레이저 자이로와 다르게 반사파의 세기를 나타내는 변수(*ϵ*)가 포함되어 있다. 이러한 반사파의 세기는 특이점에서의 반사파 세기(*A*)보다는 훨씬 작기 때문에 (*ϵ* ≪ *A*), 각 해밀토니안(식 (26))에 대 한 고윳값을 찾아보면 다음 식 (27)과 같다.

$$\omega_{cw(ccw)} = \omega_o \pm \left(\Delta\Omega + \sqrt{\epsilon(A+\epsilon)}\right)$$
$$= \omega_0 \pm \left(\Delta\Omega + \epsilon \times \sqrt{1+\frac{A}{\epsilon}}\right)$$
$$\simeq \omega_0 \pm \left(\Delta\Omega + \epsilon \times \sqrt{\frac{A}{\epsilon}}\right)$$
(27a)

$$\left|\Delta\omega_{cw(ccw)}\right| \simeq 2\left|\Delta\Omega\right| + 2\left|\epsilon\sqrt{\frac{A}{\epsilon}}\right|$$
 (27b)

위의 식 (27)에 나타난 것처럼 검출기에서 검출되 는 주파수 분리는 식 (26)에 비해 2 $\left|\epsilon \sqrt{\frac{A}{\epsilon}}\right|$ 만큼 향상 됨을 알 수 있다. 이 때 변수(ϵ)는 메타 메터리얼의 특 성(재질, 주기)에 따라 달라질 수 있다.

6. 결론

본 논문에서는 해군 함정에 주로 쓰이는 링 레이저 자이로 개선방안을 군 최초로 제안한다. 이를 위해 우 선 기존 링 레이저 자이로스코프 원리에 대해 간단히 소개하고, 이러한 링 레이저 자이로스코프가 가지는 전통적인 설계 한계에 대해 토의하였다. 이를 극복하 기 위해 현대 물리학의 비-에르미안 특이점 개념을 도 입하여 자이로 측정 정확도를 향상시키기 위한 방안 을 제시하였다.

참고문헌

[1] Payne, C. M. (Ed.). (2006). Principles of Naval Weapon Systems. Naval Institute Press.

[2] Chow, W. W., Gea–Banacloche, J., Pedrotti, L. M., Sanders,
 V. E., Schleich, W., & Scully, M. O. (1985). The Ring Laser
 Gyro. Reviews of Modern Physics, 57(1), 61.

[3] Northrop Grumman Corporation, "Ring Laser Gyro Navigator Inertial Navigation System, AN/WSN-7(V)1, -7(V)2, -7(V)3, PART NUMBERS CN-1695/WSN-7(V), CN-1696/ WSN-7(V), and CN-1697/WSN-7(V); Operation and Maintenance, with Parts Lists," https://navytribe.files.
wordpress.com/2015/11/s9427-an-omp-010.pdf) (accessed on 29th Oct.).

[4] Miller, D. A. (2008). Quantum Mechanics for Scientists and Engineers. Cambridge University Press.

[5] Lee, H., Kananen, T., Soman, A., & Gu, T. (2019). Influence of Surface Roughness on Microring–based Phase Shifters.
IEEE Photonics Technology Letters, 31(11), 813–816.
[6] Bender, C. M., & Boettcher, S. (1998). Real Spectra in non–Hermitian Hamiltonians Having P T Symmetry. Physical Review Letters, 80(24), 5243.

[7] Lee, H., Kecebas, A., Wang, F., Chang, L., Özdemir, S. K., & Gu, T. (2023). Chiral Exceptional Point and Coherent Suppression of Backscattering in Silicon Microring with Low Loss Mie Scatterer. eLight, 3(1), 20.

[8] Feng, L., Zhu, X., Yang, S., Zhu, H., Zhang, P., Yin, X., ... & Zhang, X. (2014). Demonstration of a Large–scale Optical Exceptional Point Structure. Optics Express, 22(2), 1760–1767.