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Abstract 

This article presents an autonomous surveillance robot 
with an Red-Green-Blue-Depth (RGB-D) sensor. The robot 
incorporates Simultaneous Localization and Mapping 
(SLAM), autonomous patrol, face recognition, and human 
tracking. Based on mathematical modeling, the control 
system of the robot is designed with proportional-integral-
differential (PID) controllers. Autonomous patrol is 
achieved through the control system and Robot Operating 
System (ROS) Navigation Stack. A Convolutional Neural 
Network (CNN) model is employed for face recognition. 
For human tracking, a position-control system is 
developed based on skeleton tracking. The integration of 
these functions into a single system results in a low-cost  
surveillance robot, which is tested in real-life 
environments.

본 논문에서는 저가 RGB-D 센서 기반의 실내 자율 감시 
로봇을 소개한다. 로봇에는 SLAM, 자율정찰, 얼굴인식, 
사람추적 기능이 통합되어 탑재되었으며, 제어시스템은 
수학적 모델링과 PID 제어기를 기반으로 설계되었다. 
ROS Navigation Stack을 활용하여 자율정찰 기능을 
개발했으며, CNN 모델을 통해 얼굴인식 기능을 구현했다. 
또한, 골격추적 기반의 위치제어시스템을 개발하여 
사람추적 기능을 구현했다. 기능들을 단일 시스템으로 
통합하여 저비용 감시 로봇을 개발했고, 실제 생활 
환경에서 실험했다.
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1. Introduction

Today, the use of security devices to enhance safety and pre-

vent crime is widespread and a surveillance camera is the 

most popular device. However, fixed ceiling-mounted cameras 

often suffer from blind spots and limitations in person re-

cognition. Surveillance robots provide an alternative solution, 

offering various advantages such as comprehensive area cov-

erage, optimal viewing angles, and the ability to incorporate 

additional functionalities.

In past decades, surveillance robots were developed by com-

bining surveillance systems and mobile robots. Advancements 

in autonomous navigation technology enabled the develop-

ment of surveillance robots for autonomous patrol, building 

mapping, intruder tracking, and suspicious behavior recog-

nition[1,2]. These robots significantly reduce personnel risks in 

dangerous environments.

The disadvantage of surveillance robots is the high cost. 

Surveillance robots generally employ various sensors tailored 

to their purpose, including a Red-Green-Blue (RGB) camera, 

https://crossmark.crossref.org/dialog/?doi=10.31818/JKNST.2024.6.7.2.93&domain=http://journal.knst.kr/&uri_scheme=http:&cm_version=v1.5
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RGB-D sensor, Light Detection and Ranging 

(LiDAR), Inertial Measurement Unit (IMU), and 

Global Positioning System (GPS). The more these 

expensive sensors are used, the higher the cost 

required for robot development. To reduce the 

cost, we studied developing a compact surveil-

lance robot by replacing various sensors with 

only one sensor.

Among various sensors, we focused on RGB-D 

sensors. They provide RGB images along with 

pixel distance information using infrared. Due to 

the advantage of providing RGB images and dis-

tances simultaneously, it can be utilized in vari-

ous research areas. RTAB-Map uses an RGB-D 

sensor for 3D SLAM and visual odometry[3,4]. 

RGB-D sensors were used for face recogni-

tion[5,6]. In [7,8], they were used to detect hu-

mans and recognize motion in 3D. Microsoft de-

veloped an RGB-D sensor for motion-sensing 

games[9]. Almeida et al. used an RGB-D sensor 

to recognize sign language[10].

In this research, we use Kinect V2 sensor, a 

low-cost RGB-D sensor developed by Microsoft, 

to develop an autonomous surveillance robot. 

The advantage of using the sensor is that multi-

ple functions can be implemented without the 

need for additional sensors. Unlike existing sur-

veillance robots that rely on combinations of 

high-cost sensors, this article presents a novel 

autonomous surveillance robot integrating SLAM, 

autonomous patrol, face recognition, and human 

tracking functions with a single Kinect V2 sensor.

We made a comparison between 2D SLAM of 

Gmapping[11] and 3D SLAM of RTAB-Map[3,4] to 

find the suitable SLAM technique for the RGB-D 

sensor-based surveillance robot. To implement 

autonomous patrol, we developed the robot’s 

control system based on mathematical modeling 

and used ROS Navigation Stack[12] with  Dijkstra’s 

algorithm[13] and Dynamic Window Approach 

(DWA)[14]. We utilized a CNN model[15] to re-

cognize faces from RGB images. For human track-

ing, we designed a position control system of 

the robot using depth image based on skeleton 

tracking.

This approach makes it possible to develop 

low-cost compact a surveillance robot by replac-

ing multiple sensors with a single Kinect V2 

sensor. W e verify the performance of the robot 

in a real-life environment and present the proc-

ess of developing a new system by integrating 

various techniques.

This paper consists of six sections. Section 2 

introduces the hardware design and components 

of the surveillance robot. In Section 3, the robot’s 

mathematical model is analyzed and its control 

system is presented based on the robot’s hard-

ware design. Section 4 covers the software design 

to implement SLAM, autonomous patrol, human 

tracking, and face recognition in the robot as a 

single system. In Section 5, the experimental re-

sults of each function in a real-life environment 

are given. Section 6 presents the conclusions of 

this study.

2. Hardware design

As a mobile platform, a differential-drive robot 

was developed, as shown in Fig. 1. The robot has 

two wheels with independent actuators at the 

front and a caster wheel at the rear. The robot 

moves based on the velocity difference between 

the front wheels. Using their velocity difference, it 

can change the direction easily, even in place.

    

Fig. 1. Differential-drive robot proposed in this study
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Fig. 2 shows the hardware connection of the 

robot. Three batteries power the Kinect sensor, 

Raspberry Pi, and DC motors. Voltage boosters 

ensure a stable power supply for the Kinect 

sensor and motor driver. Wireless Local Area 

Network (WLAN) facilitates communication be-

tween the laptop and Raspberry Pi. The Raspberry 

Pi controls the motors through the General- 

Purpose Input/Output (GPIO) pins connected to 

the motor driver.

Fig. 3 shows the hardware setup and commu-

nications. The laptop runs the main software code 

for SLAM, autonomous patrol, face recognition, 

and human tracking. The Raspberry Pi calculates 

and controls the robot’s velocity. In the user in-

terface part, the remote computer monitors the 

robot and sends a navigation goal. The user in-

terface provides live RGB-D images, the robot’s 

current position/orientation, skeleton tracking re-

sults, and face recognition results.
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Fig. 2. Hardware circuit diagram
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Fig. 3. Hardware setup and communications



KN S T 강경모 외, RGB-D 센서 기반 실내 자율 감시 로봇

96 2024; 7(2); pp. 93-106 Journal of the KNST

3. Mathematical modeling and control 
system

3.1. Kinematic modeling

In this research, we developed the robot’s kine-

matic model in a global frame (X, Y) and a base- 

fixed frame (x, y) as shown in Fig. 4. The global 

frame is fixed to decide the absolute position of 

the mobile robot. On the other hand, the base- 

fixed frame is located at the center of the robot’s 

front wheels and moves with the robot.

𝑿

𝑥𝑦

𝑋𝑖

𝑌𝑖

𝒀
𝜃

𝐵
𝐷

Fig. 4. Robot’s global (X, Y) and base-fixed (x, y) frames

In the base-fixed frame, the robot’s velocities 

can be obtained from the two front wheels’ an-

gular velocities.

𝑥̇ = 𝑟
2 (𝑤𝑟 + 𝑤𝑙), 𝑦̇ = 0, 𝜃 ̇ = 𝑟

𝐵 (𝑤𝑟 − 𝑤𝑙) (1)

where ẋ is the linear velocity in the longitudinal 

direction, ẏ is the linear velocity in the lateral di-

rection, θ̇ is the angular velocity,   is the distance 

between the two front wheels, r is the front 

wheels’ radius, and 𝑤r and 𝑤l are their angular 

velocities. The differential-drive robot cannot 

move in the y-direction. Moving in the y-direc-

tion indicates that it slides in the lateral dir-

ection.

The robot’s velocity in the global coordinates 

can be obtained from the velocity in the base- 

fixed coordinates.

𝑋̇ = 𝑥̇ cos 𝜃 = 𝑟
2 (𝑤𝑟 + 𝑤𝑙) cos 𝜃 (2)

𝑌̇ = 𝑥̇ sin 𝜃 = 𝑟
2 (𝑤𝑟 + 𝑤𝑙) sin 𝜃 (3)

where Ẋ and Ẏ are the robot’s linear velocities in 

the global coordinates.

3.2. Dynamic modeling

In dynamic modeling, we focused on getting 

the robot’s velocity according to the two front 

motors’ torques in the base-fixed frame. The dy-

namic model of the robot can be analyzed by di-

viding it into linear and angular motions.

The dynamic equation in linear motion was 

developed.

𝑑2𝑥
𝑑𝑡2 =

1
𝑀 ((𝑓𝑟 − 𝑓𝐹𝑟𝑓 ) + (𝑓𝑙 − 𝑓𝐹𝑙𝑓 ) − 𝑓𝑅𝑓) (4)

𝑉𝑥(𝑠) = 1
𝑀𝑠 ((𝐹𝑟 − 𝐹𝐹𝑟𝑓 ) + (𝐹𝑙 − 𝐹𝐹𝑙𝑓 ) − 𝐹𝑅𝑓) (5)

where M  is the robot’s mass, fr and fl are the 

forces from the front-right and front-left motors, 

fFrf, fFlf, and fRf are the friction forces from 

front-right, front-left, and rear wheels, and Vx(s) 

is the robot’s linear velocity in the Laplace do-

main. By substituting torques for the forces, the 

linear velocity according to the motors’ torques is 

obtained.

𝑉𝑥(𝑠) = 1
𝑀𝑟𝑠 (𝑇𝑟 + 𝑇𝑙) − 𝐹𝑥𝑓  (6)

𝐹𝑥𝑓 = 1
𝑀𝑠 (𝐹𝐹𝑟𝑓 + 𝐹𝐹𝑙𝑓 + 𝐹𝑅𝑓) (7)

where Tr and Tl represent the torques of 

front-right and front-left motors, and Fxf is the 

friction term in linear motion.

The dynamic equation of the robot in angular 

motion was developed.
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𝑑2𝜃
𝑑𝑡2 =

𝐵
2𝐼 ((𝑓𝑟 − 𝑓𝐹𝑟𝑓 ) − (𝑓𝑙 + 𝑓𝐹𝑙𝑓 )) −

𝐷𝑓𝑅𝑓
𝐼  (8)

𝑉 𝜃(𝑠) = 𝐵
2𝐼𝑠 ((𝐹𝑟 − 𝐹𝐹𝑟𝑓 ) − (𝐹𝑙 + 𝐹𝐹𝑙𝑓 )) −

𝐷𝑓𝑅𝑓
𝐼𝑠  (9)

where D  is the distance between the center of 

the front wheels and the rear wheel, and Vθ(s) 

is the robot’s angular velocity. The angular vel-

ocity according to the torques is obtained by re-

placing the forces with torques.

𝑉 𝜃(𝑠) = 𝐵
2𝐼𝑟𝑠 (𝑇𝑟 − 𝑇𝑙) − 𝐹𝜃𝑓 (10)

𝐹𝜃𝑓 = 1
2𝐼𝑠 (𝐵𝐹𝐹𝑟𝑓 + 𝐵𝐹𝐹𝑙𝑓 + 2𝐷𝐹𝑅𝑓) (11)

where Fθf is the friction term in angular motion.

3.3. Control system design

Based on the developed mathematical models, 

we designed a velocity-control system of the ro-

bot as shown in Fig. 5. Dx and Dθ represent the 

linear-velocity and angular-velocities controllers. 

GLx and GRx are the transfer functions of the 

front-left and front-right motors in linear mo-

tion. GLθ and GRθ are the transfer functions of 

the front-left and front-right motors in angular 

motion.

From Eq. (6), the linear velocity of the robot 

can be calculated with the Pulse Width 

Modulation (PWM) torque constant KP, the right 

motor PWM input PR, and the left motor PWM 

input PL.

𝑉𝑥(𝑠) = 𝐾𝑃(𝑃𝑅 + 𝑃𝐿)𝑀𝑟𝑠 − 𝐹𝑥𝑓 (12)

The parameter KP describes the linear relation-

ship between the motor’s torque and the PWM 

duty ratio, given that the input current is pro-

portional to it.

In linear-velocity control, the robot is consid-

ered to move straight without rotation. For 

straight motion, the PWM inputs to both motors 

should be equal, PR = PL. Then, Eq. (12) can be 

written using the common PWM input Pin and 

the motors’ linear-motion transfer function GLx 

and GRx.

𝑉𝑥(𝑠) = 𝑃𝑖𝑛(𝐺𝑅𝑥 + 𝐺𝐿𝑥) − 𝐹𝑥𝑓  (13)

𝐺𝑅𝑥 = 𝐺𝐿𝑥 = 𝐾𝑃𝑀𝑟𝑠 (14)

Dx

GLx

GLθ

Dθ

GRx

GRθ

Fxf

Rθ

Rx

Yx

Yθ

+

+

–+

–

–+

+

+

+

Ex

Eθ

–

Fθf

–
+

+

Fig. 5. Block diagram of the velocity control system

From Eq. (10), the angular velocity of the ro-

bot can be calculated with KP, PR, and PL.

𝑉 𝜃(𝑠) = 𝐵𝐾𝑃(𝑃𝑅 − 𝑃𝐿)2𝐼𝑟𝑠 − 𝐹𝜃𝑓 (15)

In angular-velocity control, the robot is consid-

ered rotating about the center of the two front 

wheels without linear motion. That means the 

PWM inputs of the two front motors should have 

the same magnitude and opposite sign, PR = −PL. 

Then, Eq. (15) can be written with the common 

PWM input Pin and the motors’ angular-motion 

transfer functions GLθ and GRθ.

𝑉 𝜃(𝑠) = 𝑃𝑖𝑛(𝐺𝑅𝜃 − 𝐺𝐿𝜃) − 𝐹𝜃𝑓  (16)

𝐺𝑅𝜃 = −𝐺𝐿𝜃 = 𝐵𝐾𝑃2𝐼𝑟𝑠 (17)

Based on the control system, we developed a PI 

controller Dx for linear-velocity control and a PID 

controller Dθ for angular-velocity control. The 

controllers were tuned using MATLAB Simulink.
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𝐷𝑥(𝑠) = 600𝑠 + 1200
𝑠  (18)

𝐷𝜃(𝑠) = 𝑠2 + 200𝑠 + 400
𝑠  (19)

Tustin’s method with a 30-Hz sampling fre-

quency was used to implement them on the 

Raspberry Pi[16].

𝑢𝑥[𝑘] = 𝑢𝑥[𝑘 − 1] + 620𝑒𝑥[𝑘]−580𝑒𝑥[𝑘 − 1] (20)

𝑢𝑥[𝑘] = 𝑢𝜃[𝑘 − 2] + 266𝑒𝜃[𝑘]−106𝑒𝜃[𝑘 − 1] − 133𝑒𝜃[𝑘 − 2] (21)

where ux and uθ are the control inputs, and ex 

and eθ are the errors. Finally, the PWM inputs 

for each motor are calculated as Eq. (22).

𝑃𝑅[𝑘] = 𝑢𝑥[𝑘] + 𝑢𝜃[𝑘],
𝑃𝐿[𝑘] = 𝑢𝑥[𝑘] − 𝑢𝜃[𝑘]

 (22)

4. Software design

4.1 SLAM

The surveillance robot employs SLAM to draw 

indoor maps rather than using pre-made maps 

since digital maps for autonomous patrol do not 

exist in real-life applications. The robot uses the 

Kinect sensor to build an indoor map and up-

dates it in a dynamic environment. Originally, the 

Kinect sensor was developed for Xbox video 

games as a motion-capture sensor, not for draw-

ing a map. Therefore, it is important to find the 

best SLAM technique suitable for the Kinect 

sensor. In this paper, we compare 2D SLAM of 

Gmapping[11] with 3D SLAM of RTAB-Map[3,4] 

to find the best algorithm.

4.2 Autonomous patrol

We used ROS Navigation Stack[12] for path 

planning. SLAM and Navigation Stack were close-

ly connected for autonomous patrol. Fig. 6 shows 

the overall software structure designed for auto-

nomous patrol. Navigation Stack receives sensor 

data, odometry, map, and goal position/ orien-

tation. Based on the received data, it searches for 

the best path to the destination and sends velo-

city commands to the velocity controller.

Navigation Stack has four components, global 

costmap, local costmap, global planner, and local 

planner. The global costmap receives a global 

map from SLAM for global path planning. The 

local costmap creates a local map representing a 

small area near the robot by editing the global 

map using sensor data for local path planning.

The global planner receives a goal position/ori-

entation from the user and searches for the best 

path to the destination. The global planner uses 

a global map to create a plan over the entire 

map. We used Dijkstra’s algorithm[13] as a default 

algorithm to find an optimal global path. 

   

Odometry Local planner

SLAM

Kinect

Velocity controller

Local costmap

Global planner Global costmap

Navigation stack

Goal position/pose

Map

Velocity command

Odometry

Global path Scan

Scan

Position

Odometry

Global map

 

Fig. 6. Software structure for autonomous patrol
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The local planner practically moves the robot 

according to the path-planning result. Based on 

the local map, the local planner tries to find an 

optimal local path to follow the global path 

while avoiding obstacles. We used DWA[14] as a 

default local path planning algorithm.

     

4.3 Face recognition

We used a deep-learning face recognition 

model[15] to recognize intruders. It uses 

Convolutional Neural Network (CNN), specifically 

a ResNet network with 29 convolution layers. This 

model was trained from 3 million face images 

and the recognition accuracy is 99.38 %.

In this research, the face recognition program 

receives 30-Hz live RGB images from the Kinect 

sensor to distinguish human faces in real time. 

The face recognition was designed to make three 

kinds of outputs:

⦁ Nobody: Any face is not detected. The robot 

continues autonomous patrol.

⦁ Unknown: An unregistered face is detected. 

The robot starts tracking the intruder.

⦁ Name: A registered face is detected. The 

robot records the name and continues auto-

nomous patrol.

Fig. 7 shows the visualized results of face re-

cognition before and after registering a face using 

OpenCV.

(a) Before face registration (b) After face registration

Fig. 7. Face recognition results

4.4 Human tracking

We used skeleton tracking of OpenNI2/NiTE2 

for human tracking. OpenNI2/NiTE2 recognizes 

and extracts human contours from the Kinect sen-

sor’s depth image.

Fig. 8. Skeleton tracking result visualized by RVIZ

X
(𝑑𝑥,𝑑𝑧 )

𝑑𝑧

𝑑𝑥

𝒛

𝒙

X Target

Kinect

𝜽𝑻

Fig. 9. Coordinates to calculate the target distance and 
angle

Based on the extracted contours, it tracks 15 

skeleton joints such as knees, elbows, head, and 

torso. Fig. 8 shows the skeleton tracking result 

visualized by RVIZ.

The torso center provided by skeleton tracking 

was used as a target for human tracking. Given 

that the robot moves on the ground, the target 

distance and angle are only related to the target 

position in 2D coordinates as shown in Fig. 9. 

Then, the target distance dT and angle dθ can be 

directly calculated.

𝑑𝑇 = √𝑑𝑥2 + 𝑑𝑧2, 𝜃𝑇 = tan−1 (𝑑𝑥𝑑𝑧) (23)

where dx and dz are the distance to the target 

along the x- and z-axis respectively.
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We designed the robot’s position-control sys-

tem to follow a target and maintain proper 

position. Fig. 10 shows the position control sys-

tem for human tracking. The input is the robot’s 

desired position to follow the target, and the out-

put is the robot’s position from the target. The 

control system has two components, the position 

controller and the velocity controller. The posi-

tion controller receives the position error and 

transfers the velocity commend to the velocity 

controller. The velocity controller receives the 

velocity error and moves the robot’s motors. In 

the case of the velocity controller, the controller 

designed in Section 3 was used.

The position controller consists of a distance 

controller and an angle controller. The distance 

and angle controllers respectively receive dis-

tance and angle errors and transfer linear- and 

angular-velocity commands to the velocity con-

troller. The desired position of the robot is set as 

2.0 m and 0° from the target given the Kinect 

sensor’s depth range, mounting height, and ver-

tical field of view.

4.5 Overall software architecture

In this research, we constructed the overall 

software structure using the ROS message inter-

face that communicates various types of data be-

tween each software node. Fig. 11 shows the over-

all software structure connecting software nodes 

based on the hardware connection.

  

Velocity
controller+ –

Position
controller

Skeleton tracking

𝑃𝑒𝑃𝑔𝑜𝑎𝑙 𝑣𝑐𝑚𝑑 𝑃𝑜𝑢𝑡
+ –

Robot
dynamics

𝑣𝑒 𝜏

Encoder

𝑃, 𝑣

𝑣 𝑃

  

Fig. 10. Position control system for human tracking
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position
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data Velocity

command
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PWM
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Current

Wheel
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Raspberry Pi
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Fig. 11. Overall software structure designed for the robot
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The Kinect sensor transfers RGB-D images to 

Gmapping and RTAB-Map for SLAM. In case of 

Gmapping, RGB-D images are converted to 2D 

laser-scan data for 2D SLAM. Gmapping and 

RTAB-Map create maps and find the robot’s cur-

rent position/orientation.

Based on the map, robot’s position/orientation 

and odometry data, Navigation Stack searches for 

the best path to the goal. and sends velocity com-

mands to the velocity controller.

The face-recognition node receives RGB images 

from the Kinect sensor and sends the recognition 

results to the human-tracking node. If the result 

is ‘Unknown,’ the human-tracking node extracts 

the skeleton data from depth images. Based on 

the target’s skeleton-position data, the position 

controller in the human-tracking node calculates 

the needed velocity and sends it to the velocity 

controller.

A flowchart for the system algorithm was de-

signed based on the overall software structure to 

achieve the goal of the robot. Fig. 12 shows a 

simplified system flowchart. The robot has two 

modes of autonomous patrol and human tracking. 

In the autonomous patrol mode, the robot moves 

toward a designated destination based on the 

created map and path planning results. In the 

human-tracking mode, the robot tracks the de-

tected person and maintains an appropriate dis-

tance and angle from the target based on the 3D 

skeleton tracking data.

The robot uses face recognition as a switch to 

convert modes from autonomous patrol to human 

tracking. When the robot detects an unknown 

face, it switches to the human-tracking mode. If 

the robot loses its tracking target, the robot con-

verts the mode to autonomous patrol and moves 

toward its original goal.

5. Experimental result

5.1 Velocity control

We conducted experiments to obtain the robot’s 

linear- and angular-motion responses. A 0.2-m/s 

step input was used for the linear-velocity con-

trol and a 0.3-rad/s step input for the angular-ve-

locity control. The linear and angular velocities 

were calculated using the wheel encoders.

Fig. 13(a) shows the step response of the line-

ar-velocity control. The experimental result shows 

a 1.06-s rise time and 1.64-s settling time with no 

overshoot and steady-state error. Compared to the 

simulation, there is a 0.8 s delay and a small 

oscillation.

Fig. 13(b) shows the step response of an-

gular-velocity control. The result shows a 0.87-s 

rise time and 1.24-s settling time with a 1.9 % over-

shoot and no steady-state error. Compared to the 

simulation, there is a 0.3 s delay and a small 

oscillation.

The oscillations and delays in step responses 

are caused by the uncertainty of the friction force 

and the hardware limitations such as the sensor 

noise of the wheel encoders and the dead zone of 

the DC motors. However, the oscillations and de-

lays are small and acceptable enough to be used 

for robot control.

Autonomous 
navigation mode

Human tracking
mode

Detect
unknown face?

Tracking failed?

Start

Yes

Yes

No

No

Fig. 12. Simplified system flowchart of the surveillance
robot
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(a) Step response of the linear-velocity control
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(b) Step response of the angular-velocity control

Fig. 13. Experimental results of velocity control

5.2 SLAM

Experiments were designed to evaluate the re-

liability of the robot’s SLAM. The robot mapped 

the same place using 2D SLAM of Gmapping and 

3D SLAM of RTAB-Map. The experiments were 

conducted in a corridor of a general building.

Fig. 14(a) and Fig. 14(b) show the experimental 

results of Gmapping and RTAB-Map. The created 

maps were overlaid on the ground truth map to 

compare the results of SLAM with the actual 

map.

An error measurement method proposed in 

[17] was used to evaluate the accuracy of the 

created maps. The method uses the K-nearest 

neighbor. For each occupied cell of the ground 

truth map, the distance to the nearest occupied 

cell of the created map is measured as an error. 

This method provides intuitive error metrics to 

analyze the accuracy of a map in terms of cells. 

Table 1 shows the error estimation for the creat-

ed maps.

As shown in Table 1 and Fig. 14, the map cre-

ated by Gmapping is highly accurate. In the case 

of RTAB-Map, the error and noise are relatively 

large.

(a) Gmapping (b) RTAB-Map

Fig. 14. Created maps overlaid on a ground truth map 
(red: created map, blue: ground truth map)

Algorithm RMSE Mean Max. Std.

Gmapping 0.9881 0.6466 4.2426 0.7475

RTAB-Map 4.6783 3.1274 12.1655 3.4809

Table 1. Error estimation of the SLAM results
(Unit: pixel)

5.3 Autonomous patrol

To test the robot’s autonomous patrol, an ex-

periment was designed. Fig. 15(a) shows the ex-

perimental setup for the autonomous-patrol ex-

periment. The yellow dashed line is the expected 

route, and the purple solid arrow is the destin-

ation’s position and orientation. 

Fig. 15(b) shows the experimental result of 

autonomous patrol with the robot’s trajectory 

and global path planning. The surveillance robot 
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plans a global path toward the destination with-

out unnecessary detours. At the two corners, the 

robot plans the shortest possible path while 

maintaining a safe distance from the wall.

The difference between the planned path and 

the actual trajectory is caused by localization er-

ror and delay in control. However, the deviation 

is small, and the robot smoothly follows the 

path, keeping a safe distance from the wall until 

it reaches its destination. The final position and 

orientation errors were 0.21 m and 0.14 rad.

5.4 Face recognition

An experiment was designed to evaluate the 

performance of the robot’s face recognition ac-

cording to the target distance. For the experi-

ment, 1,000 faces of various ages, races, and gen-

ders were registered on the database. Also, the 

recognition target’s face was registered. To exam-

ine the actual applicability of face recognition, 

the target was asked to wear various accessories 

such as a cap, mask, and glasses at each distance.

Table 2 shows the experimental result. The 

maximum recognition distance was 5.5 m. When 

the target wore a hat or glasses, the maximum 

distance decreased to 5.0 m, and when wearing a 

mask, it decreased to 3.0 m.

Target

Distance
(m)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Face ○ ○ ○ ○ ○ ○ ○ ○ ○ ×

With glasses ○ ○ ○ ○ ○ ○ ○ ○ × ×

With a cap ○ ○ ○ ○ ○ ○ ○ ○ × ×

With a mask ○ ○ ○ ○ × × × × × ×

Table 2. Experimental result of face recognition

5.5 Human tracking

An experiment was conducted in order to esti-

mate the robot’s human tracking with a moving 

target. Fig. 16(a) shows the experimental setup. 

The target was set at 2.2 m and 0° from the robot. 

The target was asked to move along the corridor. 

In this experiment, the robot’s velocity was mea-

sured by the wheel encoders, and the target posi-

tion was measured by the Kinect sensor.

Fig. 16(b) shows the experimental result with 

the robot and target trajectories. As shown in the 

result, the robot smoothly followed the target 

and maintained the desired position (2.0 m, 0°).

Fig. 17(a) and Fig. 17(b) show the target dis-

tance and the robot’s linear velocity. At first, the 

robot increased its linear velocity to maintain the 

desired distance of 2.0 m. From 4.19 s to 45.89 s, 

Start

4.40 m

9.37 m3.55 m

(a) Route for autonomous patrol

: Planned global path
: Robot’s actual trajectory
: Robot’s position at 5-s intervals
: Robot’s final position

Start

(b) Experimental result of autonomous patrol

Fig. 15. Experimental setup and result of autonomous patrol
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the robot maintained the goal distance. At 45.89 s, 

when the moving target suddenly stopped, the 

robot decreases the velocity and moves backward 

slightly to maintain the target distance. When the 

target completely stopped, the distance error was 

0.02 m.

Target
start

Robot
start

Target
end

: Robot’s initial position

: Target’s initial position

: Target’s final position

7.45 m

2.85 m

2.22 m

(a) Experimental setup for human tracking

: Robot’s position at 5-s intervals

: Target’s position at 5-s intervals

Start
R0

R1

R2

R3

R4
R5

R6 R7 R8 R9

T0

T1

T2

T3 T4 T5 T6 T7 T8 T9

(b) Trajectories of the robot and the target

Fig. 16. Experimental setup and result of human tracking
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Fig. 17. Result of human-tracking experiment
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Fig. 17(c) and Fig. 17(d) show the target angle 

and the robot’s angular velocity. At 8.90 s, the 

target started a right turn along the corridor, 

and the robot decreased the angular velocity to 

negative to reduce the target angle. At 30.11 s, 

the robot made the target angle 0° and stopped 

rotating. When the target completely stopped, 

the steady-state error of the target angle was 

0.62°.

6. Conclusion

This paper presents the development of an in-

door autonomous surveillance robot based on a 

single RGB-D sensor. The robot’s hardware was 

designed as a differential-drive robot with two 

wheels with independent actuators at the front 

and a caster wheel at the rear. Based on the 

hardware design, we developed the robot’s math-

ematical model and designed control system. As 

software, SLAM, autonomous patrol, face recog-

nition, and human tracking were successfully 

implemented and integrated into a single system 

based on ROS.

Through experiments for each function, the 

robot’s performance in a real-life environment 

was demonstrated. The robot created accurate 

maps with Gmapping and RTAB-Map. The root 

mean square error of the created maps were 

0.9881 for Gmapping and 4.6783 for RTAB-Map 

in pixel. Based on the created map, the robot 

successfully planned a patrol path and autono-

mously moved along the path to the destination 

without any collision. The final position and ori-

entation errors of the autonomous patrol were 

0.21 m and 0.14 rad. The robot reliably detected 

and recognized a face at 1.5 m – 5.5 m and track-

ed a moving target while maintaining the de-

sired position without tracking loss. The steady- 

state errors of the human tracking were 0.02 m 

and 0.62°.
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