
© 2024 Korea Society for Naval Science & Technology 93

J o u r n a l o f t h e 2024; Vol.7, No.2; pp.093-106

KNST
ISSN: 2635-4926 https://doi.org/10.31818/JKNST.2024.6.7.2.93

Received: 2024/04/08
Revised: 2024/04/19
Accepted: 2024/05/13
Published: 2024/06/30

*Corresponding Author:
Kyeongmo Kang
Dept. of Mechanical System Engineering, Republic of
Korea Naval Academy
1 Jungwon-ro, Jinhae-gu, Changwon-si,
Gyungsangnam-do, 51704, Republic of Korea
Tel: +82-55-907-5316
E-mail: kmkang@navy.ac.kr

Abstract

This article presents an autonomous surveillance robot
with an Red-Green-Blue-Depth (RGB-D) sensor. The robot
incorporates Simultaneous Localization and Mapping
(SLAM), autonomous patrol, face recognition, and human
tracking. Based on mathematical modeling, the control
system of the robot is designed with proportional-integral-
differential (PID) controllers. Autonomous patrol is
achieved through the control system and Robot Operating
System (ROS) Navigation Stack. A Convolutional Neural
Network (CNN) model is employed for face recognition.
For human tracking, a position-control system is
developed based on skeleton tracking. The integration of
these functions into a single system results in a low-cost
surveillance robot, which is tested in real-life
environments.

본 논문에서는 저가 RGB-D 센서 기반의 실내 자율 감시
로봇을 소개한다. 로봇에는 SLAM, 자율정찰, 얼굴인식,
사람추적 기능이 통합되어 탑재되었으며, 제어시스템은
수학적 모델링과 PID 제어기를 기반으로 설계되었다.
ROS Navigation Stack을 활용하여 자율정찰 기능을
개발했으며, CNN 모델을 통해 얼굴인식 기능을 구현했다.
또한, 골격추적 기반의 위치제어시스템을 개발하여
사람추적 기능을 구현했다. 기능들을 단일 시스템으로
통합하여 저비용 감시 로봇을 개발했고, 실제 생활
환경에서 실험했다.

Keywords

자율정찰(Autonomous Patrol),
디지털제어(Digital Control),
RGB-D 센서(RGB-D Sensor), 로봇운영체계(ROS),
감시로봇(Surveillance Robot)

Acknowledgement

본 논문은 해군사관학교 해양연구소 학술연구과제
연구비의 지원으로 수행된 연구임.

Indoor Autonomous
Surveillance Robot
Based on RGB-D
Sensor
RGB-D 센서 기반 실내 자율 감시 로봇

Kyeongmo Kang1*, Won-jong Kim2

1LT, ROK Navy/Instructor, Department of Mechanical System Engineering,
Republic of Korea Naval Academy
2Associate professor, Dept. of Mechanical Engineering, Texas A&M University

강경모1*, 김원종2

1해군 대위/해군사관학교 기계시스템공학과 교관
2텍사스 A&M 대학교 기계공학과 부교수

1. Introduction

Today, the use of security devices to enhance safety and pre-

vent crime is widespread and a surveillance camera is the

most popular device. However, fixed ceiling-mounted cameras

often suffer from blind spots and limitations in person re-

cognition. Surveillance robots provide an alternative solution,

offering various advantages such as comprehensive area cov-

erage, optimal viewing angles, and the ability to incorporate

additional functionalities.

In past decades, surveillance robots were developed by com-

bining surveillance systems and mobile robots. Advancements

in autonomous navigation technology enabled the develop-

ment of surveillance robots for autonomous patrol, building

mapping, intruder tracking, and suspicious behavior recog-

nition[1,2]. These robots significantly reduce personnel risks in

dangerous environments.

The disadvantage of surveillance robots is the high cost.

Surveillance robots generally employ various sensors tailored

to their purpose, including a Red-Green-Blue (RGB) camera,

https://crossmark.crossref.org/dialog/?doi=10.31818/JKNST.2024.6.7.2.93&domain=http://journal.knst.kr/&uri_scheme=http:&cm_version=v1.5

KN S T 강경모 외, RGB-D 센서 기반 실내 자율 감시 로봇

94 2024; 7(2); pp. 93-106 Journal of the KNST

RGB-D sensor, Light Detection and Ranging

(LiDAR), Inertial Measurement Unit (IMU), and

Global Positioning System (GPS). The more these

expensive sensors are used, the higher the cost

required for robot development. To reduce the

cost, we studied developing a compact surveil-

lance robot by replacing various sensors with

only one sensor.

Among various sensors, we focused on RGB-D

sensors. They provide RGB images along with

pixel distance information using infrared. Due to

the advantage of providing RGB images and dis-

tances simultaneously, it can be utilized in vari-

ous research areas. RTAB-Map uses an RGB-D

sensor for 3D SLAM and visual odometry[3,4].

RGB-D sensors were used for face recogni-

tion[5,6]. In [7,8], they were used to detect hu-

mans and recognize motion in 3D. Microsoft de-

veloped an RGB-D sensor for motion-sensing

games[9]. Almeida et al. used an RGB-D sensor

to recognize sign language[10].

In this research, we use Kinect V2 sensor, a

low-cost RGB-D sensor developed by Microsoft,

to develop an autonomous surveillance robot.

The advantage of using the sensor is that multi-

ple functions can be implemented without the

need for additional sensors. Unlike existing sur-

veillance robots that rely on combinations of

high-cost sensors, this article presents a novel

autonomous surveillance robot integrating SLAM,

autonomous patrol, face recognition, and human

tracking functions with a single Kinect V2 sensor.

We made a comparison between 2D SLAM of

Gmapping[11] and 3D SLAM of RTAB-Map[3,4] to

find the suitable SLAM technique for the RGB-D

sensor-based surveillance robot. To implement

autonomous patrol, we developed the robot’s

control system based on mathematical modeling

and used ROS Navigation Stack[12] with Dijkstra’s

algorithm[13] and Dynamic Window Approach

(DWA)[14]. We utilized a CNN model[15] to re-

cognize faces from RGB images. For human track-

ing, we designed a position control system of

the robot using depth image based on skeleton

tracking.

This approach makes it possible to develop

low-cost compact a surveillance robot by replac-

ing multiple sensors with a single Kinect V2

sensor. W e verify the performance of the robot

in a real-life environment and present the proc-

ess of developing a new system by integrating

various techniques.

This paper consists of six sections. Section 2

introduces the hardware design and components

of the surveillance robot. In Section 3, the robot’s

mathematical model is analyzed and its control

system is presented based on the robot’s hard-

ware design. Section 4 covers the software design

to implement SLAM, autonomous patrol, human

tracking, and face recognition in the robot as a

single system. In Section 5, the experimental re-

sults of each function in a real-life environment

are given. Section 6 presents the conclusions of

this study.

2. Hardware design

As a mobile platform, a differential-drive robot

was developed, as shown in Fig. 1. The robot has

two wheels with independent actuators at the

front and a caster wheel at the rear. The robot

moves based on the velocity difference between

the front wheels. Using their velocity difference, it

can change the direction easily, even in place.

Fig. 1. Differential-drive robot proposed in this study

Kyeongmo Kang et al., Indoor Autonomous Surveillance Robot Based on RGB-D Sensor K N S T

Journal of the KNST 2024; 7(2); pp. 93-106 95

Fig. 2 shows the hardware connection of the

robot. Three batteries power the Kinect sensor,

Raspberry Pi, and DC motors. Voltage boosters

ensure a stable power supply for the Kinect

sensor and motor driver. Wireless Local Area

Network (WLAN) facilitates communication be-

tween the laptop and Raspberry Pi. The Raspberry

Pi controls the motors through the General-

Purpose Input/Output (GPIO) pins connected to

the motor driver.

Fig. 3 shows the hardware setup and commu-

nications. The laptop runs the main software code

for SLAM, autonomous patrol, face recognition,

and human tracking. The Raspberry Pi calculates

and controls the robot’s velocity. In the user in-

terface part, the remote computer monitors the

robot and sends a navigation goal. The user in-

terface provides live RGB-D images, the robot’s

current position/orientation, skeleton tracking re-

sults, and face recognition results.

Raspberry Pi

H-bridge
motor driver

(VNH3ASP30)
Laptop

Kinect V2

Left wheel
encoder

Right wheel
encoder

Voltage booster

7.2 V
NIMH

battery

Voltage booster

Left motor
(CHR-GM37-520)

Right motor
(CHR-GM37-520)

11.1 V
Li-ion
battery

5 V
Portable
charger

+ – + –

+ –12 V12 V

PWR IN

USB PWR IN

WLANWLAN

GPIO23

GPIO24

GPIO 5

GPIO 6

GPIO17

GPIO 3

GPIO 4

GPIO21

GPIO16

GPIO20

3 V GND

OUT A OUT B 3 V OUT A OUT B 3 V

OUT 2A

OUT 2B

OUT 1A

OUT 1B

–

GND

+

IN 1BIN 1APWM1

IN 2BIN 2APWM2

–

+

–

+

GND GND

Fig. 2. Hardware circuit diagram

DC motors

Motor driver

Encoders

Kinect sensor
WLAN

WLAN

LaptopMonitoring computer

USB

GPIO

Send goals

Monitoring

Velocity control

Compute odometry

SLAM Autonomous
patrol

Face
recognition

Human
tracking

User interface Mobile robot

Raspberry Pi

Fig. 3. Hardware setup and communications

KN S T 강경모 외, RGB-D 센서 기반 실내 자율 감시 로봇

96 2024; 7(2); pp. 93-106 Journal of the KNST

3. Mathematical modeling and control
system

3.1. Kinematic modeling

In this research, we developed the robot’s kine-

matic model in a global frame (X, Y) and a base-

fixed frame (x, y) as shown in Fig. 4. The global

frame is fixed to decide the absolute position of

the mobile robot. On the other hand, the base-

fixed frame is located at the center of the robot’s

front wheels and moves with the robot.

𝑿

𝑥𝑦

𝑋𝑖

𝑌𝑖

𝒀
𝜃

𝐵
𝐷

Fig. 4. Robot’s global (X, Y) and base-fixed (x, y) frames

In the base-fixed frame, the robot’s velocities

can be obtained from the two front wheels’ an-

gular velocities.

𝑥̇ = 𝑟
2 (𝑤𝑟 + 𝑤𝑙), 𝑦̇ = 0, 𝜃 ̇ = 𝑟

𝐵 (𝑤𝑟 − 𝑤𝑙) (1)

where ẋ is the linear velocity in the longitudinal

direction, ẏ is the linear velocity in the lateral di-

rection, θ̇ is the angular velocity,  is the distance

between the two front wheels, r is the front

wheels’ radius, and 𝑤r and 𝑤l are their angular

velocities. The differential-drive robot cannot

move in the y-direction. Moving in the y-direc-

tion indicates that it slides in the lateral dir-

ection.

The robot’s velocity in the global coordinates

can be obtained from the velocity in the base-

fixed coordinates.

𝑋̇ = 𝑥̇ cos 𝜃 = 𝑟
2 (𝑤𝑟 + 𝑤𝑙) cos 𝜃 (2)

𝑌̇ = 𝑥̇ sin 𝜃 = 𝑟
2 (𝑤𝑟 + 𝑤𝑙) sin 𝜃 (3)

where Ẋ and Ẏ are the robot’s linear velocities in

the global coordinates.

3.2. Dynamic modeling

In dynamic modeling, we focused on getting

the robot’s velocity according to the two front

motors’ torques in the base-fixed frame. The dy-

namic model of the robot can be analyzed by di-

viding it into linear and angular motions.

The dynamic equation in linear motion was

developed.

𝑑2𝑥
𝑑𝑡2 =

1
𝑀 ((𝑓𝑟 − 𝑓𝐹𝑟𝑓) + (𝑓𝑙 − 𝑓𝐹𝑙𝑓) − 𝑓𝑅𝑓) (4)

𝑉𝑥(𝑠) = 1
𝑀𝑠 ((𝐹𝑟 − 𝐹𝐹𝑟𝑓) + (𝐹𝑙 − 𝐹𝐹𝑙𝑓) − 𝐹𝑅𝑓) (5)

where M is the robot’s mass, fr and fl are the

forces from the front-right and front-left motors,

fFrf, fFlf, and fRf are the friction forces from

front-right, front-left, and rear wheels, and Vx(s)

is the robot’s linear velocity in the Laplace do-

main. By substituting torques for the forces, the

linear velocity according to the motors’ torques is

obtained.

𝑉𝑥(𝑠) = 1
𝑀𝑟𝑠 (𝑇𝑟 + 𝑇𝑙) − 𝐹𝑥𝑓 (6)

𝐹𝑥𝑓 = 1
𝑀𝑠 (𝐹𝐹𝑟𝑓 + 𝐹𝐹𝑙𝑓 + 𝐹𝑅𝑓) (7)

where Tr and Tl represent the torques of

front-right and front-left motors, and Fxf is the

friction term in linear motion.

The dynamic equation of the robot in angular

motion was developed.

Kyeongmo Kang et al., Indoor Autonomous Surveillance Robot Based on RGB-D Sensor K N S T

Journal of the KNST 2024; 7(2); pp. 93-106 97

𝑑2𝜃
𝑑𝑡2 =

𝐵
2𝐼 ((𝑓𝑟 − 𝑓𝐹𝑟𝑓) − (𝑓𝑙 + 𝑓𝐹𝑙𝑓)) −

𝐷𝑓𝑅𝑓
𝐼 (8)

𝑉 𝜃(𝑠) = 𝐵
2𝐼𝑠 ((𝐹𝑟 − 𝐹𝐹𝑟𝑓) − (𝐹𝑙 + 𝐹𝐹𝑙𝑓)) −

𝐷𝑓𝑅𝑓
𝐼𝑠 (9)

where D is the distance between the center of

the front wheels and the rear wheel, and Vθ(s)

is the robot’s angular velocity. The angular vel-

ocity according to the torques is obtained by re-

placing the forces with torques.

𝑉 𝜃(𝑠) = 𝐵
2𝐼𝑟𝑠 (𝑇𝑟 − 𝑇𝑙) − 𝐹𝜃𝑓 (10)

𝐹𝜃𝑓 = 1
2𝐼𝑠 (𝐵𝐹𝐹𝑟𝑓 + 𝐵𝐹𝐹𝑙𝑓 + 2𝐷𝐹𝑅𝑓) (11)

where Fθf is the friction term in angular motion.

3.3. Control system design

Based on the developed mathematical models,

we designed a velocity-control system of the ro-

bot as shown in Fig. 5. Dx and Dθ represent the

linear-velocity and angular-velocities controllers.

GLx and GRx are the transfer functions of the

front-left and front-right motors in linear mo-

tion. GLθ and GRθ are the transfer functions of

the front-left and front-right motors in angular

motion.

From Eq. (6), the linear velocity of the robot

can be calculated with the Pulse Width

Modulation (PWM) torque constant KP, the right

motor PWM input PR, and the left motor PWM

input PL.

𝑉𝑥(𝑠) = 𝐾𝑃(𝑃𝑅 + 𝑃𝐿)𝑀𝑟𝑠 − 𝐹𝑥𝑓 (12)

The parameter KP describes the linear relation-

ship between the motor’s torque and the PWM

duty ratio, given that the input current is pro-

portional to it.

In linear-velocity control, the robot is consid-

ered to move straight without rotation. For

straight motion, the PWM inputs to both motors

should be equal, PR = PL. Then, Eq. (12) can be

written using the common PWM input Pin and

the motors’ linear-motion transfer function GLx

and GRx.

𝑉𝑥(𝑠) = 𝑃𝑖𝑛(𝐺𝑅𝑥 + 𝐺𝐿𝑥) − 𝐹𝑥𝑓 (13)

𝐺𝑅𝑥 = 𝐺𝐿𝑥 = 𝐾𝑃𝑀𝑟𝑠 (14)

Dx

GLx

GLθ

Dθ

GRx

GRθ

Fxf

Rθ

Rx

Yx

Yθ

+

+

–+

–

–+

+

+

+

Ex

Eθ

–

Fθf

–
+

+

Fig. 5. Block diagram of the velocity control system

From Eq. (10), the angular velocity of the ro-

bot can be calculated with KP, PR, and PL.

𝑉 𝜃(𝑠) = 𝐵𝐾𝑃(𝑃𝑅 − 𝑃𝐿)2𝐼𝑟𝑠 − 𝐹𝜃𝑓 (15)

In angular-velocity control, the robot is consid-

ered rotating about the center of the two front

wheels without linear motion. That means the

PWM inputs of the two front motors should have

the same magnitude and opposite sign, PR = −PL.

Then, Eq. (15) can be written with the common

PWM input Pin and the motors’ angular-motion

transfer functions GLθ and GRθ.

𝑉 𝜃(𝑠) = 𝑃𝑖𝑛(𝐺𝑅𝜃 − 𝐺𝐿𝜃) − 𝐹𝜃𝑓 (16)

𝐺𝑅𝜃 = −𝐺𝐿𝜃 = 𝐵𝐾𝑃2𝐼𝑟𝑠 (17)

Based on the control system, we developed a PI

controller Dx for linear-velocity control and a PID

controller Dθ for angular-velocity control. The

controllers were tuned using MATLAB Simulink.

KN S T 강경모 외, RGB-D 센서 기반 실내 자율 감시 로봇

98 2024; 7(2); pp. 93-106 Journal of the KNST

𝐷𝑥(𝑠) = 600𝑠 + 1200
𝑠 (18)

𝐷𝜃(𝑠) = 𝑠2 + 200𝑠 + 400
𝑠 (19)

Tustin’s method with a 30-Hz sampling fre-

quency was used to implement them on the

Raspberry Pi[16].

𝑢𝑥[𝑘] = 𝑢𝑥[𝑘 − 1] + 620𝑒𝑥[𝑘]−580𝑒𝑥[𝑘 − 1] (20)

𝑢𝑥[𝑘] = 𝑢𝜃[𝑘 − 2] + 266𝑒𝜃[𝑘]−106𝑒𝜃[𝑘 − 1] − 133𝑒𝜃[𝑘 − 2] (21)

where ux and uθ are the control inputs, and ex

and eθ are the errors. Finally, the PWM inputs

for each motor are calculated as Eq. (22).

𝑃𝑅[𝑘] = 𝑢𝑥[𝑘] + 𝑢𝜃[𝑘],
𝑃𝐿[𝑘] = 𝑢𝑥[𝑘] − 𝑢𝜃[𝑘]

 (22)

4. Software design

4.1 SLAM

The surveillance robot employs SLAM to draw

indoor maps rather than using pre-made maps

since digital maps for autonomous patrol do not

exist in real-life applications. The robot uses the

Kinect sensor to build an indoor map and up-

dates it in a dynamic environment. Originally, the

Kinect sensor was developed for Xbox video

games as a motion-capture sensor, not for draw-

ing a map. Therefore, it is important to find the

best SLAM technique suitable for the Kinect

sensor. In this paper, we compare 2D SLAM of

Gmapping[11] with 3D SLAM of RTAB-Map[3,4]

to find the best algorithm.

4.2 Autonomous patrol

We used ROS Navigation Stack[12] for path

planning. SLAM and Navigation Stack were close-

ly connected for autonomous patrol. Fig. 6 shows

the overall software structure designed for auto-

nomous patrol. Navigation Stack receives sensor

data, odometry, map, and goal position/ orien-

tation. Based on the received data, it searches for

the best path to the destination and sends velo-

city commands to the velocity controller.

Navigation Stack has four components, global

costmap, local costmap, global planner, and local

planner. The global costmap receives a global

map from SLAM for global path planning. The

local costmap creates a local map representing a

small area near the robot by editing the global

map using sensor data for local path planning.

The global planner receives a goal position/ori-

entation from the user and searches for the best

path to the destination. The global planner uses

a global map to create a plan over the entire

map. We used Dijkstra’s algorithm[13] as a default

algorithm to find an optimal global path.

Odometry Local planner

SLAM

Kinect

Velocity controller

Local costmap

Global planner Global costmap

Navigation stack

Goal position/pose

Map

Velocity command

Odometry

Global path Scan

Scan

Position

Odometry

Global map

Fig. 6. Software structure for autonomous patrol

Kyeongmo Kang et al., Indoor Autonomous Surveillance Robot Based on RGB-D Sensor K N S T

Journal of the KNST 2024; 7(2); pp. 93-106 99

The local planner practically moves the robot

according to the path-planning result. Based on

the local map, the local planner tries to find an

optimal local path to follow the global path

while avoiding obstacles. We used DWA[14] as a

default local path planning algorithm.

4.3 Face recognition

We used a deep-learning face recognition

model[15] to recognize intruders. It uses

Convolutional Neural Network (CNN), specifically

a ResNet network with 29 convolution layers. This

model was trained from 3 million face images

and the recognition accuracy is 99.38 %.

In this research, the face recognition program

receives 30-Hz live RGB images from the Kinect

sensor to distinguish human faces in real time.

The face recognition was designed to make three

kinds of outputs:

⦁ Nobody: Any face is not detected. The robot

continues autonomous patrol.

⦁ Unknown: An unregistered face is detected.

The robot starts tracking the intruder.

⦁ Name: A registered face is detected. The

robot records the name and continues auto-

nomous patrol.

Fig. 7 shows the visualized results of face re-

cognition before and after registering a face using

OpenCV.

(a) Before face registration (b) After face registration

Fig. 7. Face recognition results

4.4 Human tracking

We used skeleton tracking of OpenNI2/NiTE2

for human tracking. OpenNI2/NiTE2 recognizes

and extracts human contours from the Kinect sen-

sor’s depth image.

Fig. 8. Skeleton tracking result visualized by RVIZ

X
(𝑑𝑥,𝑑𝑧)

𝑑𝑧

𝑑𝑥

𝒛

𝒙

X Target

Kinect

𝜽𝑻

Fig. 9. Coordinates to calculate the target distance and
angle

Based on the extracted contours, it tracks 15

skeleton joints such as knees, elbows, head, and

torso. Fig. 8 shows the skeleton tracking result

visualized by RVIZ.

The torso center provided by skeleton tracking

was used as a target for human tracking. Given

that the robot moves on the ground, the target

distance and angle are only related to the target

position in 2D coordinates as shown in Fig. 9.

Then, the target distance dT and angle dθ can be

directly calculated.

𝑑𝑇 = √𝑑𝑥2 + 𝑑𝑧2, 𝜃𝑇 = tan−1 (𝑑𝑥𝑑𝑧) (23)

where dx and dz are the distance to the target

along the x- and z-axis respectively.

KN S T 강경모 외, RGB-D 센서 기반 실내 자율 감시 로봇

100 2024; 7(2); pp. 93-106 Journal of the KNST

We designed the robot’s position-control sys-

tem to follow a target and maintain proper

position. Fig. 10 shows the position control sys-

tem for human tracking. The input is the robot’s

desired position to follow the target, and the out-

put is the robot’s position from the target. The

control system has two components, the position

controller and the velocity controller. The posi-

tion controller receives the position error and

transfers the velocity commend to the velocity

controller. The velocity controller receives the

velocity error and moves the robot’s motors. In

the case of the velocity controller, the controller

designed in Section 3 was used.

The position controller consists of a distance

controller and an angle controller. The distance

and angle controllers respectively receive dis-

tance and angle errors and transfer linear- and

angular-velocity commands to the velocity con-

troller. The desired position of the robot is set as

2.0 m and 0° from the target given the Kinect

sensor’s depth range, mounting height, and ver-

tical field of view.

4.5 Overall software architecture

In this research, we constructed the overall

software structure using the ROS message inter-

face that communicates various types of data be-

tween each software node. Fig. 11 shows the over-

all software structure connecting software nodes

based on the hardware connection.

Velocity
controller+ –

Position
controller

Skeleton tracking

𝑃𝑒𝑃𝑔𝑜𝑎𝑙 𝑣𝑐𝑚𝑑 𝑃𝑜𝑢𝑡
+ –

Robot
dynamics

𝑣𝑒 𝜏

Encoder

𝑃, 𝑣

𝑣 𝑃

Fig. 10. Position control system for human tracking

Velocity
controller

Human
tracking

Face
recognition

Odometry

Gmapping/
RTAB-Map

Navigation
stack

Motor
driver

DC motor

Kinect
sensor

Wheel
encoder

RGB
image Depth

image

RGB-D
image

Recognition
result

Map.
position

Odometry
data Velocity

command

Velocity
command

PWM
signal

Current

Wheel
velocity

Laptop

Raspberry Pi

: Software

: Hardware

Fig. 11. Overall software structure designed for the robot

Kyeongmo Kang et al., Indoor Autonomous Surveillance Robot Based on RGB-D Sensor K N S T

Journal of the KNST 2024; 7(2); pp. 93-106 101

The Kinect sensor transfers RGB-D images to

Gmapping and RTAB-Map for SLAM. In case of

Gmapping, RGB-D images are converted to 2D

laser-scan data for 2D SLAM. Gmapping and

RTAB-Map create maps and find the robot’s cur-

rent position/orientation.

Based on the map, robot’s position/orientation

and odometry data, Navigation Stack searches for

the best path to the goal. and sends velocity com-

mands to the velocity controller.

The face-recognition node receives RGB images

from the Kinect sensor and sends the recognition

results to the human-tracking node. If the result

is ‘Unknown,’ the human-tracking node extracts

the skeleton data from depth images. Based on

the target’s skeleton-position data, the position

controller in the human-tracking node calculates

the needed velocity and sends it to the velocity

controller.

A flowchart for the system algorithm was de-

signed based on the overall software structure to

achieve the goal of the robot. Fig. 12 shows a

simplified system flowchart. The robot has two

modes of autonomous patrol and human tracking.

In the autonomous patrol mode, the robot moves

toward a designated destination based on the

created map and path planning results. In the

human-tracking mode, the robot tracks the de-

tected person and maintains an appropriate dis-

tance and angle from the target based on the 3D

skeleton tracking data.

The robot uses face recognition as a switch to

convert modes from autonomous patrol to human

tracking. When the robot detects an unknown

face, it switches to the human-tracking mode. If

the robot loses its tracking target, the robot con-

verts the mode to autonomous patrol and moves

toward its original goal.

5. Experimental result

5.1 Velocity control

We conducted experiments to obtain the robot’s

linear- and angular-motion responses. A 0.2-m/s

step input was used for the linear-velocity con-

trol and a 0.3-rad/s step input for the angular-ve-

locity control. The linear and angular velocities

were calculated using the wheel encoders.

Fig. 13(a) shows the step response of the line-

ar-velocity control. The experimental result shows

a 1.06-s rise time and 1.64-s settling time with no

overshoot and steady-state error. Compared to the

simulation, there is a 0.8 s delay and a small

oscillation.

Fig. 13(b) shows the step response of an-

gular-velocity control. The result shows a 0.87-s

rise time and 1.24-s settling time with a 1.9 % over-

shoot and no steady-state error. Compared to the

simulation, there is a 0.3 s delay and a small

oscillation.

The oscillations and delays in step responses

are caused by the uncertainty of the friction force

and the hardware limitations such as the sensor

noise of the wheel encoders and the dead zone of

the DC motors. However, the oscillations and de-

lays are small and acceptable enough to be used

for robot control.

Autonomous
navigation mode

Human tracking
mode

Detect
unknown face?

Tracking failed?

Start

Yes

Yes

No

No

Fig. 12. Simplified system flowchart of the surveillance
robot

KN S T 강경모 외, RGB-D 센서 기반 실내 자율 감시 로봇

102 2024; 7(2); pp. 93-106 Journal of the KNST

0 1 2 3 4 5 6 7
Time (sec)

0

0.05

0.1

0.15

0.2

0.25
Linear velocity control

Simulation
Experiment

(a) Step response of the linear-velocity control

0 1 2 3 4 5 6 7
Time (sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Angular velocity control

Simulation
Experiment

(b) Step response of the angular-velocity control

Fig. 13. Experimental results of velocity control

5.2 SLAM

Experiments were designed to evaluate the re-

liability of the robot’s SLAM. The robot mapped

the same place using 2D SLAM of Gmapping and

3D SLAM of RTAB-Map. The experiments were

conducted in a corridor of a general building.

Fig. 14(a) and Fig. 14(b) show the experimental

results of Gmapping and RTAB-Map. The created

maps were overlaid on the ground truth map to

compare the results of SLAM with the actual

map.

An error measurement method proposed in

[17] was used to evaluate the accuracy of the

created maps. The method uses the K-nearest

neighbor. For each occupied cell of the ground

truth map, the distance to the nearest occupied

cell of the created map is measured as an error.

This method provides intuitive error metrics to

analyze the accuracy of a map in terms of cells.

Table 1 shows the error estimation for the creat-

ed maps.

As shown in Table 1 and Fig. 14, the map cre-

ated by Gmapping is highly accurate. In the case

of RTAB-Map, the error and noise are relatively

large.

(a) Gmapping (b) RTAB-Map

Fig. 14. Created maps overlaid on a ground truth map
(red: created map, blue: ground truth map)

Algorithm RMSE Mean Max. Std.

Gmapping 0.9881 0.6466 4.2426 0.7475

RTAB-Map 4.6783 3.1274 12.1655 3.4809

Table 1. Error estimation of the SLAM results
(Unit: pixel)

5.3 Autonomous patrol

To test the robot’s autonomous patrol, an ex-

periment was designed. Fig. 15(a) shows the ex-

perimental setup for the autonomous-patrol ex-

periment. The yellow dashed line is the expected

route, and the purple solid arrow is the destin-

ation’s position and orientation.

Fig. 15(b) shows the experimental result of

autonomous patrol with the robot’s trajectory

and global path planning. The surveillance robot

Kyeongmo Kang et al., Indoor Autonomous Surveillance Robot Based on RGB-D Sensor K N S T

Journal of the KNST 2024; 7(2); pp. 93-106 103

plans a global path toward the destination with-

out unnecessary detours. At the two corners, the

robot plans the shortest possible path while

maintaining a safe distance from the wall.

The difference between the planned path and

the actual trajectory is caused by localization er-

ror and delay in control. However, the deviation

is small, and the robot smoothly follows the

path, keeping a safe distance from the wall until

it reaches its destination. The final position and

orientation errors were 0.21 m and 0.14 rad.

5.4 Face recognition

An experiment was designed to evaluate the

performance of the robot’s face recognition ac-

cording to the target distance. For the experi-

ment, 1,000 faces of various ages, races, and gen-

ders were registered on the database. Also, the

recognition target’s face was registered. To exam-

ine the actual applicability of face recognition,

the target was asked to wear various accessories

such as a cap, mask, and glasses at each distance.

Table 2 shows the experimental result. The

maximum recognition distance was 5.5 m. When

the target wore a hat or glasses, the maximum

distance decreased to 5.0 m, and when wearing a

mask, it decreased to 3.0 m.

Target

Distance
(m)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Face ○ ○ ○ ○ ○ ○ ○ ○ ○ ×

With glasses ○ ○ ○ ○ ○ ○ ○ ○ × ×

With a cap ○ ○ ○ ○ ○ ○ ○ ○ × ×

With a mask ○ ○ ○ ○ × × × × × ×

Table 2. Experimental result of face recognition

5.5 Human tracking

An experiment was conducted in order to esti-

mate the robot’s human tracking with a moving

target. Fig. 16(a) shows the experimental setup.

The target was set at 2.2 m and 0° from the robot.

The target was asked to move along the corridor.

In this experiment, the robot’s velocity was mea-

sured by the wheel encoders, and the target posi-

tion was measured by the Kinect sensor.

Fig. 16(b) shows the experimental result with

the robot and target trajectories. As shown in the

result, the robot smoothly followed the target

and maintained the desired position (2.0 m, 0°).

Fig. 17(a) and Fig. 17(b) show the target dis-

tance and the robot’s linear velocity. At first, the

robot increased its linear velocity to maintain the

desired distance of 2.0 m. From 4.19 s to 45.89 s,

Start

4.40 m

9.37 m3.55 m

(a) Route for autonomous patrol

: Planned global path
: Robot’s actual trajectory
: Robot’s position at 5-s intervals
: Robot’s final position

Start

(b) Experimental result of autonomous patrol

Fig. 15. Experimental setup and result of autonomous patrol

KN S T 강경모 외, RGB-D 센서 기반 실내 자율 감시 로봇

104 2024; 7(2); pp. 93-106 Journal of the KNST

the robot maintained the goal distance. At 45.89 s,

when the moving target suddenly stopped, the

robot decreases the velocity and moves backward

slightly to maintain the target distance. When the

target completely stopped, the distance error was

0.02 m.

Target
start

Robot
start

Target
end

: Robot’s initial position

: Target’s initial position

: Target’s final position

7.45 m

2.85 m

2.22 m

(a) Experimental setup for human tracking

: Robot’s position at 5-s intervals

: Target’s position at 5-s intervals

Start
R0

R1

R2

R3

R4
R5

R6 R7 R8 R9

T0

T1

T2

T3 T4 T5 T6 T7 T8 T9

(b) Trajectories of the robot and the target

Fig. 16. Experimental setup and result of human tracking

0 10 20 30 40 50 60
Time (sec)

0

0.5

1

1.5

2

2.5

3

3.5

Target distance

(a) Target distance

0 10 20 30 40 50 60
Time (sec)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Linear velocity

(b) Robot’s linear velocity

0 10 20 30 40 50 60
Time (sec)

-20

-15

-10

-5

0

5

10

15

20
Target angle

(c) Target angle

0 10 20 30 40 50
Time (sec)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Angular velocity

(b) Robot’s angular velocity

Fig. 17. Result of human-tracking experiment

Kyeongmo Kang et al., Indoor Autonomous Surveillance Robot Based on RGB-D Sensor K N S T

Journal of the KNST 2024; 7(2); pp. 93-106 105

Fig. 17(c) and Fig. 17(d) show the target angle

and the robot’s angular velocity. At 8.90 s, the

target started a right turn along the corridor,

and the robot decreased the angular velocity to

negative to reduce the target angle. At 30.11 s,

the robot made the target angle 0° and stopped

rotating. When the target completely stopped,

the steady-state error of the target angle was

0.62°.

6. Conclusion

This paper presents the development of an in-

door autonomous surveillance robot based on a

single RGB-D sensor. The robot’s hardware was

designed as a differential-drive robot with two

wheels with independent actuators at the front

and a caster wheel at the rear. Based on the

hardware design, we developed the robot’s math-

ematical model and designed control system. As

software, SLAM, autonomous patrol, face recog-

nition, and human tracking were successfully

implemented and integrated into a single system

based on ROS.

Through experiments for each function, the

robot’s performance in a real-life environment

was demonstrated. The robot created accurate

maps with Gmapping and RTAB-Map. The root

mean square error of the created maps were

0.9881 for Gmapping and 4.6783 for RTAB-Map

in pixel. Based on the created map, the robot

successfully planned a patrol path and autono-

mously moved along the path to the destination

without any collision. The final position and ori-

entation errors of the autonomous patrol were

0.21 m and 0.14 rad. The robot reliably detected

and recognized a face at 1.5 m – 5.5 m and track-

ed a moving target while maintaining the de-

sired position without tracking loss. The steady-

state errors of the human tracking were 0.02 m

and 0.62°.

References

[1] T. Theodoridis and H. Hu, “Toward intelligent security
robots: A survey,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), Vol. 42, No. 6,
pp. 1219–1230, Nov. 2012.
[2] M. Saptharishi, C. Spence Oliver, C. Diehl, K. Bhat,
J. Dolan, A. Trebi-Ollennu, and P. Khos, “Distributed
surveillance and reconnaissance using multiple autonomous
ATVs: Cyberscout,” IEEE Transactions on Robotics and
Automation, Vol. 18, No. 5, pp. 826–836, Oct. 2002.
[3] M. Labbé and F. Michaud, “Appearance-based loop
closure detection for online large-scale and long-term
operation,” IEEE Transactions on Robotics, Vol. 29, No. 3,
pp. 734–745, Feb. 2013.
[4] M. Labbé, F. Michaud, “RTAB-Map as an open-source
LiDAR and visual simultaneous localization and mapping
library for large-scale and long-term online operation,”
Journal of Field Robotics, Vol. 36, No. 2, pp. 416–446, Oct. 2018.
[5] G. Goswami, S. Bharadwaj, M. Vasta, and R. Singh, “On
RGB-D face recognition using kinect,” in Proceedings of the
2013 IEEE Sixth International Conference on Biometrics:
Theory, Applications, and Systems, Oct. 2013, pp. 1–6.
[6] Y. Lee, J. Chen, C. Tseng, and S. Lai, “Accurate and robust
face recognition from RGB-D images with a deep learning
approach,” in Proceedings of the British Machine Vision
Conference, Sep. 2016, pp. 123.1–123.14.
[7] L. Spinello and K. O. Arras, “People detection in RGB-D
data,” in Proceedings of the 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2011,
pp. 3838–3843.
[8] J. Liu, Y. Liu, G. Zhang, P. Zhu, and Y. Q. Chen, “Detecting
and tracking people in real time with RGB-D camera,” Pattern
Recognition Letters, Vol. 53, pp. 16–23, Feb. 2015.
[9] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose
recognition in parts from single depth images,” in Proceedings
of the CVPR 2011, Jun. 2011, pp. 1297–1304.
[10] S. G. M. Almeida, F. G. Guimarães, and J. A. Ramírez,
“Feature extraction in Brazilian sign language recognition
based on phonological structure and using RGB-D sensors,”
Expert Systems with Applications, Vol. 41, No. 16,
pp. 7259–7271, Nov. 2014.
[11] G. Grisetti, C. Stachniss, and W. Burgard, “Improving
grid-based SLAM with rao-blackwellized particle filters by
adaptive proposals and selective resampling,” in Proceedings of
the 2005 IEEE International Conference on Robotics and
Automation, Apr. 2005, pp. 2432–2437.
[12] E. Marder-Eppstein, E. Berger, T.Foote, B. Gerkey, and K.
Konolige, “The office marathon: Robust navigation in an indoor
office environment,” in Proceedings of the 2010 IEEE
International Conference on Robotics and Automation, May

KN S T 강경모 외, RGB-D 센서 기반 실내 자율 감시 로봇

106 2024; 7(2); pp. 93-106 Journal of the KNST

2010, pp. 300–307.
[13] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, Vol. 1, No. 1, pp. 269–271,
Jun. 1959
[14] D. Fox, W. Burgard, and S. Thrun, “The dynamic window
approach to collision avoidance,” IEEE Robotics and
Automation Magazine, Vol. 4, No. 1, pp. 23–33, Mar. 1997.
[15] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal
of Machine Learning Research, Vol. 10, pp. 1755–1758, Jul.

2009.
[16] G. F. Franklin, J. D. Powell, and A. Emami-Naein,
Feedback Control of Dynamic Systems (8th Edition), Pearson,
Jan. 2018.
[17] J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation
of 2D SLAM techniques available in robot operating system,” in
Proceedings of the 2013 IEEE International Symposium on
Safety, Security, and Rescue Robotics, Oct. 2013, pp. 1–6.

	Indoor Autonomous Surveillance Robot Based on RGB-D Sensor
	Abstract
	1. Introduction
	2. Hardware design
	3. Mathematical modeling and control system
	4. Software design
	5. Experimental result
	6. Conclusion
	References

