## Journal of the



ISSN: 2635-4926

Check for updates

2024; Vol.7, No.3; pp.335-340

https://doi.org/10.31818/JKNST.2024.9.7.3.335

#### Received: 2024/06/12 Revised: 2024/06/21 Accepted: 2024/08/24 Published: 2024/09/30

#### \*Corresponding Author:

#### Yeondeok Yoo

PGM RF & IIR Seeker R&D Lab, LIG Nex1 207, Mabuk-ro, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea

Tel: +82-31-326-9491

E-mail: yeondeok.yoo@lignex1.com

#### Abstract

다중 센서 정렬이란 다중 센서(IR, visible)에서 얻은 각각의 영상의 픽셀이 대응되도록 정렬하는 것을 의미한다. 모든 오차를 고려하여 다중 센서를 정렬하기엔 한계가 있으며 이동, 운용 간 오차가 발생할 가능성이 있어 이에 대한 능동적인 대처가 어렵다. 줌 렌즈를 사용하는 다중 센서를 효율적으로 정렬하기 위해 가시광 이미지 센서의 windowing 기법을 이용한 실시간 다중 줌 센서 정렬 방법을 제안한다.

Multi sensor alignment means aligning the pixels of each image obtained from each sensor(IR, visible) so that they correspond. It becomes difficult to align multiple sensors in consideration of all errors. There is a possibility of error by movement or operation. So, it is difficult to correct errors immediately. This study presents a method for real-time multi sensor alignment using the Windowing technique of Visible image sensor to solve this problem.

#### Keywords

실시간(Real-time), 영상센서(Image Sensor), 줌 렌즈(Zoom Lens), 다중 센서 정렬(Multi Sensor Alignment), 윈도윙(Windowing)

#### Acknowledgement

이 논문은 2024년도 한국해군과학기술학회 하계학술대회 발표 논문임

이 논문은 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임

# 가시광 이미지 센서의 Windowing 기법을 이용한 실시간 다중 줌 센서 정렬

## Real-time Multi Zoom Sensor Alignment Using Windowing Technique of Visible Image Sensor

## 유연덕<sup>1\*</sup>, 김홍락<sup>2</sup>, 박진호<sup>2</sup>, 박성현<sup>1</sup>

<sup>1</sup>LIG넥스원 PGM 탐색기연구소 선임연구원 <sup>2</sup>LIG넥스원 PGM 탐색기연구소 수석연구원

#### Yeondeok Yoo1\*, Hong-Rak Kim<sup>2</sup>, Jin-ho Park<sup>2</sup>, Sunghyun Park<sup>1</sup>

<sup>1</sup>Research engineer, PGM RF & IIR Seeker R&D Lab, LIG Nex1
<sup>2</sup>Chief research engineer, PGM RF & IIR Seeker R&D Lab, LIG Nex1

## 1. 서론

다중 센서 정렬이란 다중 센서(IR, visible)에서 동일한 대상에 대한 각 영상의 픽셀이 좌표 간 대응되도록 정렬하는 것을 의미한 다. 정렬 방법에는 다중 센서 중 하나의 센서를 기준으로 다른 센서 가 동일한 위치가 되도록 직접 이동시켜 정렬시키는 방법과 알고 리즘을 통해 정렬시키는 방법 등이 있다.

파장대역을 달리하는 다중 센서 영상은 동일한 렌즈를 이용하여 획득하기 어렵다. 따라서 동일한 대상에 대해 초점 거리나 영상 크 기, 영상의 획득 위치 및 방향 등에서 동일한 영상이 획득되기 어렵 다. 그러므로 다중 센서 영상의 결합을 위해서는 획득된 다중 센서 영상 간의 정렬이 필수적이다.

줌 렌즈는 배율 또는 유효초점거리가 연속적으로 변해도 상면이 고정되는 광학계로 정의된다[1]. 줌 렌즈는 단초점 렌즈에 비해 비 교적 많은 렌즈가 사용되며 이로 인해 공차 항목이 많아진다[2]. 이러한 오차를 모두 고려하여 정렬하기엔 한계가 있으며 이동, 운 용 간 오차가 발생할 가능성이 있어 이에 대한 능동적인 대처가 어 렵다. 이를 해결하기 위해 가시광 센서의 windowing 기법을 이용 하고자 한다. 가시광 이미지 센서는 전체 영역에 걸쳐 개별 픽셀 데 이터에 접근이 가능하기 때문에 픽셀 중 선택된 부분 만 읽고 처리가 가능하다.[3] 이렇게 선택된 부분의 픽셀만 읽어 영상을 구성하는 기술을 windowing 또는 window-of-interest readout이라고 한다. 이 미지 센서의 전체 픽셀 중 일부에만 관심이 있거나, 필요한 자원을 최적화하고 이미지 처리 및 분석 속도 를 향상시키기 위해 사용되기도 한다.

 Fig. 1은 x좌표 windowing 동작을 나타낸 것이

 다. Windowing 전 영역을 노란색 사각형, x좌표

 windowing 후의 영역이 빨간색 사각형이다. 영상

 시작 픽셀 좌표를 (a, b)에서 (a+x, b)로 이동하는

 방식으로 x좌표 windowing이 동작된다.

초록색 원을 기준 대상체라고 했을 때, windowing 전 영역에서는 중앙에 위치하지만, windowing 후 영역에서는 좌측에 위치하게 된다. 즉, 영상 시작 픽셀 좌표가 *x*만큼 움직이면, windowing 후 기준 대상체는 -*x*만큼 위치가 이동하게 된다.

Fig. 2는 *y*좌표 windowing 동작을 나타낸 것이 다. 영상 시작 픽셀 좌표를 (*a*, *b*)에서 (*a*, *b*+*y*)로 이







**Fig. 2.** *y*-axis windowing

동하는 방식으로 y좌표 windowing이 동작된다.

x좌표 windowing과 마찬가지로, windowing 전 영역에서는 중앙에 위치하지만, windowing 후 영 역에서는 상단에 위치하게 된다. 즉, 영상 시작 픽셀 좌표가 y만큼 움직이면, windowing 후 기준 대상체 는 -y만큼 위치가 이동하게 된다.



Fig. 3. Windowing of visible image sensor

선택된 부분의 픽셀로 영상을 구성할 수 있는 점을 활용하여 정렬오차 발생 시, windowing 기법을 통 해 정렬 오차를 보정하는 방법을 제안한다.

## 2. 시험 구성

다중 줌 센서 정렬에 사용한 줌 렌즈 및 이미지 센 서의 사양은 Tables 1-3과 같다.

#### Table 1. Specification of zoom lens

| Name      | Wavelength      | Focal length   |
|-----------|-----------------|----------------|
| 680204    | 3.4 μm – 5.0 μm | 15 mm – 300 mm |
| TL936A-R6 | 440 nm – 950 nm | 9 mm – 36 mm   |

#### Table 2. Specification of IR image sensor

| Item             | Value       |
|------------------|-------------|
| Company          | 0000000     |
| Name             | 0000000     |
| Number of pixels | 000×000     |
| Wavelength       | Ο μm − Ο μm |
| Size of pixel    | O μm×O μm   |

Table 3. Specification of VIS image sensor

| Item             | Value     |
|------------------|-----------|
| Company          | 000000    |
| Name             | 000000    |
| Number of pixels | 0000×000  |
| Wavelength       | Visible   |
| Size of pixel    | ⊖ μm×⊖ μm |

시험 구성은 다음과 같으며 약 5.4 km 떨어진 건물 을 기준 대상체로 하였다.



Fig. 4. Diagram of test



Fig. 5. Object of test

## 3. Windowing 좌표계산자동화

줌을 통해 초점거리가 변화하게 되면 그에 따라 windowing을 위한 좌표가 변경된다. 이때마다 육 안으로 확인하며 다중 센서 정렬을 하는 것은 매우 비효율적이다.

정렬 자동화를 위해 줌 step마다 기준 대상체의 좌 표를 모두 측정한다. 실제값과 오차가 최소가 되도록 구간을 나누고 구간별 추세선 식을 구한다. 이를 통 해 줌 step 별 windowing 값을 자동 계산할 수 있다.

먼저, 센서 정렬의 기준이 되는 IR 이미지 센서에 서 기준 대상체의 좌측 상단의 x, y 좌표를 측정하고 구간별 추세선을 구한다(Table 4 및 Fig. 6 참조). 마 찬가지로 동일한 기준 대상체와 동일한 방법으로 가 시광 이미지 센서에 대해서 x, y 좌표와 구간별 추세 선을 구한다(Table 5 및 Fig. 7 참조). 다음으로 두 이미지 센서 간 x 좌표 오차와 y 좌표 오차를 구하고, 이에 대한 구간별 추세선을 구한다(Tables 6-7 및 Figs. 8-9 참조).

| Tal | ole 4 | I. ( | (IR) | ) x and | l v | coordinate | accordin | iq to | zoom | step |
|-----|-------|------|------|---------|-----|------------|----------|-------|------|------|
|     |       |      | •    |         | ~   |            |          | J     |      |      |

| Zoom<br>step | <i>x</i><br>value | Trend line<br>of<br><i>x</i> value | <i>x</i><br>value<br>error | y<br>value | Trend line<br>of<br>y value | y<br>value<br>error |
|--------------|-------------------|------------------------------------|----------------------------|------------|-----------------------------|---------------------|
| 19500        | 180               | 180.5388                           | -0.5388                    | 306        | 305.2187                    | 0.7813              |
| 23075        | 211               | 209.8005                           | 1.1995                     | 294        | 294.8713                    | -0.8713             |
| 26470        | 233               | 233.6607                           | -0.6608                    | 286        | 286.4340                    | -0.4340             |
| 30390        | 250               | 250.6854                           | -0.6854                    | 279        | 277.9450                    | 1.0550              |
| 32520        | 260               | 259.9164                           | 0.0836                     | 274        | 273.7810                    | 0.2190              |
| 33285        | 264               | 263.0849                           | 0.9151                     | 272        | 272.3518                    | -0.3518             |
| 34420        | 268               | 267.6541                           | 0.3460                     | 269        | 270.2907                    | -1.2907             |
| 35290        | 271               | 271.0555                           | -0.0556                    | 268        | 268.7563                    | -0.7563             |
| 37300        | 278               | 278.6039                           | -0.6040                    | 267        | 265.3513                    | 1.6487              |

**Table 5.** (VIS) x and y coordinate according to zoom step

| Zoom<br>step | <i>x</i><br>value | Trend line<br>of<br><i>x</i> value | <i>x</i><br>value<br>error | y<br>value | Trend line<br>of<br>y value | y<br>value<br>error |
|--------------|-------------------|------------------------------------|----------------------------|------------|-----------------------------|---------------------|
| 36           | 307               | 306.9924                           | 0.0076                     | 239        | 239.0206                    | -0.0206             |
| 336          | 302               | 302.0550                           | -0.0550                    | 241        | 240.8497                    | 0.1503              |
| 536          | 298               | 297.9066                           | 0.0934                     | 243        | 243.2558                    | -0.2558             |
| 836          | 290               | 290.0918                           | -0.0918                    | 248        | 247.7523                    | 0.2477              |
| 1036         | 284               | 283.9633                           | 0.0367                     | 251        | 251.1079                    | -0.1079             |
| 1436         | 271               | 271.0358                           | -0.0358                    | 259        | 258.9305                    | 0.0695              |
| 1936         | 248               | 248.0003                           | -0.0003                    | 271        | 270.9999                    | 0.0001              |
| 2336         | 225               | 225.0006                           | -0.0006                    | 283        | 282.9999                    | 0.0001              |
| 2936         | 180               | 180.0012                           | -0.0012                    | 306        | 305.9997                    | 0.0003              |



Fig. 6. (IR) trend line of x and y coordinate







|   | IR<br>zoom<br>step | VIS<br>zoom<br>step | IR<br><i>x</i> value | VIS<br><i>x</i> value | x error  | <i>x</i> error<br>trend line |
|---|--------------------|---------------------|----------------------|-----------------------|----------|------------------------------|
|   | 37300              | 36                  | 278.6039             | 306.9924              | -28.3885 | -28.2581                     |
|   | 36400              | 136                 | 275.2756             | 305.4717              | -30.1961 | -30.1872                     |
|   | 35790              | 236                 | 272.9726             | 303.8402              | -30.8676 | -30.9046                     |
|   | 35290              | 336                 | 271.0555             | 302.0550              | -30.9994 | -31.0136                     |
|   | 34840              | 436                 | 269.3067             | 300.0841              | -30.7773 | -30.7120                     |
|   | 34420              | 536                 | 267.6540             | 297.9066              | -30.2525 | -30.0920                     |
|   | 34010              | 636                 | 266.0211             | 295.5127              | -29.4916 | -29.1944                     |
|   | 33615              | 736                 | 264.4292             | 292.9037              | -28.4745 | -28.0943                     |
|   | 33285              | 836                 | 263.0848             | 290.0917              | -27.0069 | -27.0355                     |
|   | 32925              | 936                 | 261.6030             | 287.1002              | -25.4972 | -25.7832                     |
|   | 32520              | 1036                | 259.9164             | 283.9633              | -24.0469 | -24.3265                     |
|   | 32075              | 1136                | 258.0388             | 280.7265              | -22.6876 | -22.7849                     |
|   | 31575              | 1236                | 255.8979             | 277.4461              | -21.5482 | -21.3190                     |
|   | 31010              | 1336                | 253.4374             | 274.1897              | -20.7522 | -20.3217                     |
|   | 30390              | 1436                | 250.6854             | 271.0357              | -20.3503 | -20.5373                     |
|   | 29715              | 1536                | 247.6246             | 266.8105              | -19.1859 | -19.2127                     |
|   | 28960              | 1636                | 244.1175             | 262.4346              | -18.3170 | -18.2154                     |
| ĺ | 28165              | 1736                | 240.3244             | 257.8535              | -17.5290 | -17.6701                     |
|   | 27330              | 1836                | 236.2234             | 253.0484              | -16.8249 | -16.7362                     |
|   | 26470              | 1936                | 233.6607             | 248.0003              | -14.3396 | -14.3602                     |
|   | 25605              | 2036                | 227.8853             | 242.6904              | -14.8050 | -14.8028                     |
|   | 24745              | 2136                | 221.9466             | 237.0997              | -15.1531 | -15.1619                     |
|   | 23895              | 2236                | 215.8705             | 231.2094              | -15.3389 | -15.3179                     |
|   | 23075              | 2336                | 209.8004             | 225.0006              | -15.2001 | -15.2208                     |
|   | 22270              | 2436                | 203.6279             | 218.4544              | -14.8264 | -14.8330                     |
|   | 21485              | 2536                | 197.3899             | 211.5518              | -14.1619 | -14.1236                     |
|   | 20735              | 2636                | 191.2134             | 204.2742              | -13.0607 | -13.0936                     |
|   | 19995              | 2736                | 184.8963             | 196.6024              | -11.7061 | -11.6966                     |
|   | 19600              | 2836                | 181.4279             | 188.5177              | -7.0898  | -7.0898                      |
| Ì | 19500              | 2936                | 180.5387             | 180.0012              | 0.5375   | 0.5375                       |

#### Table 7. Error of y coordinate between IR to VIS

| IR<br>zoom<br>step | VIS<br>zoom<br>step | IR<br>y value | VIS<br>y value | y error | <i>y</i> error<br>trend line |
|--------------------|---------------------|---------------|----------------|---------|------------------------------|
| 37300              | 36                  | 265.3513      | 239.0206       | 26.3306 | 26.1471                      |
| 36400              | 136                 | 266.8526      | 239.3104       | 27.5421 | 27.8301                      |
| 35790              | 236                 | 267.8915      | 239.9432       | 27.9482 | 28.1154                      |
| 35290              | 336                 | 268.7562      | 240.8496       | 27.9066 | 27.9260                      |
| 34840              | 436                 | 269.5451      | 241.9703       | 27.5747 | 27.4845                      |
| 34420              | 536                 | 270.2906      | 243.2557       | 27.0348 | 26.8821                      |
| 34010              | 636                 | 271.0272      | 244.6661       | 26.3610 | 26.1529                      |
| 33615              | 736                 | 271.7453      | 246.1717       | 25.5736 | 25.3505                      |
| 33285              | 836                 | 272.3517      | 247.7523       | 24.5994 | 24.6274                      |
| 32925              | 936                 | 273.0202      | 249.3978       | 23.6223 | 23.8061                      |
| 32520              | 1036                | 273.7810      | 251.1078       | 22.6731 | 22.8697                      |
| 32075              | 1136                | 274.6279      | 252.8918       | 21.7360 | 21.8634                      |
| 31575              | 1236                | 275.5937      | 254.7692       | 20.8244 | 20.8135                      |
| 31010              | 1336                | 276.7035      | 256.7691       | 19.9344 | 19.8051                      |
| 30390              | 1436                | 277.9450      | 258.9304       | 19.0145 | 19.0180                      |
| 29715              | 1536                | 279.3257      | 261.1688       | 18.1568 | 18.1471                      |
| 28960              | 1636                | 280.9076      | 263.4466       | 17.4610 | 17.4614                      |
| 28165              | 1736                | 282.6187      | 265.8399       | 16.7787 | 16.7959                      |
| 27330              | 1836                | 284.4686      | 268.3554       | 16.1131 | 16.1263                      |
| 26470              | 1936                | 286.4339      | 270.9999       | 15.4340 | 15.4312                      |
| 25605              | 2036                | 288.4762      | 273.7799       | 14.6963 | 14.6874                      |
| 24745              | 2136                | 290.5762      | 276.7021       | 13.8741 | 13.8645                      |
| 23895              | 2236                | 292.7248      | 279.7732       | 12.9516 | 12.9314                      |
| 23075              | 2336                | 294.8712      | 282.9998       | 11.8714 | 11.8830                      |
| 22270              | 2436                | 297.0540      | 286.3887       | 10.6652 | 10.6791                      |
| 21485              | 2536                | 299.2598      | 289.9464       | 9.3133  | 9.3080                       |
| 20735              | 2636                | 301.4439      | 293.6797       | 7.7641  | 7.7886                       |
| 19995              | 2736                | 303.6777      | 297.5953       | 6.0824  | 6.0634                       |
| 19600              | 2836                | 304.9042      | 301.6997       | 3.2044  | 3.2044                       |
| 19500              | 2936                | 305.2186      | 305.9997       | -0.7810 | -0.7810                      |





Fig. 9. Trend line of y coordinate error

위에서 구한 추세선을 통해 모든 줌 step에서 오 차가 얼마나 발생하였는지 계산할 수 있다. 발생한 오차만큼 좌우상하로 windowing하여 두 센서 간 오차를 보정할 수 있다.

## 4. Windowing 전후 영상 비교

Fig. 10은 windowing 전, 적외선 영상과 가시광 영상이다. 초록색 사각형과 붉은색 십자 표시는 적외 선 영상과 가시광 영상 모두 동일한 위치에 있다. 초 록색 사각형 안의 기준 대상체 건물을 비교해보면, 적 외선 영상에서는 중앙에 위치하지만 가시광 영상에 서는 우측 상단에 위치하는 것을 확인할 수 있다. 이 는 IR 이미지 센서와 가시광 이미지 센서로부터 얻은 영상의 정렬이 맞지 않는다는 것을 의미한다.



Fig. 10. Image before windowing

Fig. 11은 x 좌표 windowing 동작 후의 영상이다. 초록색 사각형 안의 기준 대상체 건물이 좌측으로 이 동한 것을 확인할 수 있다. 이는 영상의 시작지점을 기존 시작지점으로부터 우측으로 설정하여 얻은 영 상이며 windowing을 통해 위치를 변경할 수 있음을 보여준다.



Fig. 11. Image after x axis windowing

Fig. 12는 y 좌표 windowing 동작 후의 영상이다. 초록색 사각형 안의 기준 대상체 건물이 하단으로 이 동한 것을 확인할 수 있다. 이는 영상의 시작지점을 기존 시작지점으로부터 상단으로 설정하여 얻은 영 상이다. 적외선 영상과 가시광 영상을 비교했을 때, 초록색 사각형 안의 건물의 위치가 같아졌음을 확인 할 수 있다. 이는 IR 이미지 센서와 가시광 이미지 센 서로부터 얻은 영상이 정렬되었음을 의미한다.



Fig. 12. Image after y axis windowing

## 5. 결론

줌 렌즈의 초점거리가 변경될 때 다중 센서 정렬 오 차가 발생한다. 이때 발생한 오차를 가시광 이미지 센서의 Windowing 기법을 통해 영역을 이동하여 오차를 보정하는 방법을 제안하고 실제 시험을 통해 실시간 보정이 가능함을 보였다. 또한, 줌 step 별 두 센서 간 좌표 차이의 추세선을 통해 보정 자동화가 가능함을 보였다.

## 참고문헌

[1] K. Yamaji, "Design of zoom lenses," Progress in Optics VI, E. Wolf, ed., 1967, pp. 105–170.

[2] Jae Myung Ryu, "Focus-adjustment Method for a High-magnification Zoom-lens System," Korean Journal of Optics and Photonics, Vol. 34, No. 2, April 2023, pp. 66–71.
[3] Litwiller, Dave. "Ccd vs. cmos," Photonics spectra 35.1, 2001, pp. 154–158.