레이더-광학장비 연계 객체 식별 AI 시스템의 개발 방안에 대한 연구
Ⓒ 2024 Korea Society for Naval Science & Technology
초록
본 연구에서는 장거리 객체 탐지 능력은 탁월하나 객체의 식별 및 분류에 있어서 취약한 레이더 시스템을 보완하고자 레이더를 통해 획득한 객체의 표적 제원을 바탕으로 광학장비-YOLO-ESPCN 연계를 통한 AI 객체 식별 시스템을 제안하였다. 제안된 시스템은 광학장비를 통한 객체의 직접 관측을 바탕으로 근거리에서의 정확한 객체 식별 및 분류가 이루어졌으며, 해상 유·무인 복합체계에 적용 가능성을 나타냈다.
Abstract
In this study, we proposed AI object classification system through optical equipment-YOLO-ESPCN linkage based on target data of objects acquired through radar, where it has excellent long-range object detection capabilities but is vulnerable in classification of objects. The proposed model was accurately identified and classified at a short-distance based on direct observation through optical equipment, and showed that it could be applied to a maritime manned/unmanned complex system.
Keywords:
Target Classification, Transfer Learning, AI System, Surveillance and Reconnaissance키워드:
표적 식별, 전이학습, 인공지능 시스템, 감시·정찰Acknowledgments
이 논문은 2023년 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임 (KRIT-CT-23-030)
References
- Ic-Pyo Hong, “Analysis of Radar Cross Section Characteristics for Camouflage Net with Stealth,” Journal of Korean Institute of Information Technology, Vol. 13, pp. 53-60, 2015. [https://doi.org/10.14801/jkiit.2015.13.4.53]
- Dong-Geon Song, Byeong-Ju Yan and Rho-Shin Myong, “Effects of IR Reduction Design on RCS of UCAV,” Journal of the Korean Society for Aeronautical and Space and Science, Vol. 46, pp. 297-305, 2017. [https://doi.org/10.5139/JKSAS.2018.46.4.297]
- Seungnam Kang, Soonbok Lee, Hoseok Jang, Jihong Kim and Hongjae Kim, “Considerations for the Construction of 360° Surrounding Video and the Establishment of Intelligent Marine Object Image Identification System,” Proceedings of 2019 Smart Navy Conference, 2019.
- Joseph Redmon, Santosh Divvala, Ross Girshick and Ali Fafhadi, “You Only Look Once: Unified, Real-time Object Detection" Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. [https://doi.org/10.1109/CVPR.2016.91]
- Peiyuan Jiang, Daji Ergu, Fangyao Liu, Ying Cai and Bo Ma, “A Review of Yolo Algorithm Developments,” Procedia Computer Science, Vol. 199, pp. 1066-1073, 2022. [https://doi.org/10.1016/j.procs.2022.01.135]
- Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos and Ben Upcroft, “Simple Online and Realtime Tracking,” 2016 IEEE International Conference on Image Processing. 2016. [https://doi.org/10.1109/ICIP.2016.7533003]
- Wenzhe Shi, Jose Caballero, Ferenc Juszar, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel Ruekert and Zehan Wang, “Real-time Single Image and Video Super-resolution Using an Efficient Sub-pixel Convolutional Neural Network,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874-1883, 2016. [https://doi.org/10.1109/CVPR.2016.207]