
CBM 프로세스 분석을 통한 국방 CBM 운영 KPI 도출에 관한 연구
© 2023 Korea Society for Naval Science & Technology
초록
예방 유지보수는 고장을 감소시켜, 장비의 효율성과 불가동시간 최소화에 기여하고 있다. 그러나 불필요한 유지보수 활동으로 높은 비용을 지불하는 큰 단점이 부각되었다. 이러한 문제점을 극복하기 위하여 CBM을 적용하기 시작했다. 이러한 상황에서 국방 CBM의 체계적인 운영과 무기체계 준비태세를 극대화하기 위하여 국방 CBM 프로세스와 KPI 도출이 필요하게 되었다. 민간 분야에서는 CBM 성과측정 연구가 다양하게 진행되고 있지만, 국방 분야에서는 거의 연구되지 않고 있는 것이 현실이다. 본 연구는 국방 CBM 프로세스 단계 구조화, 단계별 액티비티(activity) 도출 및 액티비티 관련 KPI 항목을 설정 및 제시하였다. 이는 한국군 첨단 무기체계 CBM 확대 측면에서 효과적인 운영 극대화가 될 것으로 기대된다.
Abstract
Preventive maintenance (PM) has been used to reduce equipment failures and minimize downtime. However, it has been criticized for its high cost due to unnecessary maintenance activities. To address this issue, condition based maintenance (CBM) has been adopted. In this context, it is necessary to develop a defense CBM process and key performance indicators (KPIs) to ensure the systematic operation of defense CBM and maximize the readiness of weapon systems. In the private sector, research on CBM performance measurement is being conducted in various ways, but it is rarely studied in the defense sector. This study proposes a defense CBM process, identifies activities for each step, and sets KPIs for each activity. It is expected that this will lead to the effective operation of defense CBM for advanced weapon systems in the Korean military.
Keywords:
Condition Based Maintenance, Defense CBM Process, Activity, Key Performance Indicators키워드:
상태기반 유지보수, 국방 CBM 프로세스, 액티비티, 핵심성과지표References
-
de Jonge, B. & Scarf, P. A. (2020) A Review on Maintenance Optimization. European Journal of Operational Research, 285, 805-824.
[https://doi.org/10.1016/j.ejor.2019.09.047]
-
Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020) Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability, 12(19), 1-42.
[https://doi.org/10.3390/su12198211]
-
Bousdekis, A., Apostolou, D., & Mentzas, G. (2020) Predictive Maintenance in the 4th Industrial Revolution: Benefits, Business Opportunities, and Managerial Implications. IEEE Engineering Management Review, 48(1), 57-62.
[https://doi.org/10.1109/EMR.2019.2958037]
-
Petrillo, A., De Felice, F., & Zomparelli, F. (2018) Performance Measurement for World-class Manufacturing: A Model for the Italian Automotive Industry. Total Quality Management & Business Excellence, 30(7-8), 908-935.
[https://doi.org/10.1080/14783363.2017.1408402]
-
Oh, K. (2016) Development of Korean Condition Based Maintenance Systems to Monitor Naval Weapon Systems. Journal of Aerospace System Engineering, 10(4), 67-74.
[https://doi.org/10.20910/JASE.2016.10.4.67]
-
Glas, A. H., Henne, F. U., & Essig, M. (2018) Missing Performance Management and Measurement Aspects in Performance-based Contracting. International Journal of Operations & Production Management, 38(11), 2062-2095.
[https://doi.org/10.1108/IJOPM-09-2016-0571]
-
Shin, J. H., & Jun, H. B. (2015) On Condition Based Maintenance Policy. Journal of Computational Design and Engineering, 2(2), 119-127.
[https://doi.org/10.1016/j.jcde.2014.12.006]
- DOD (2022) Audit of the Department of Defense’s Implementation of Predictive Maintenance Strategies to Support Weapon System Sustainment.
-
Kothamasu, R., Huang, S. H., & VerDuin, W. H. (2006) System Health Monitoring and Prognostics - A Review of Current Paradigms and Practices. The International of Advantage Manufacturing Technology, 28, 1012-1024.
[https://doi.org/10.1007/s00170-004-2131-6]
- Teixeira, H. N., Lopes, I., & Braga, A. C. (2021) Condition-based Maintenance Implementation: A Literature Review. 30th International Conference on Flexible Automation and Intelligent Manufacturing, Athens, Greece.
-
Peng, Y., Dong, M., & Zuo, M. J. (2010) Current Status of Machine Prognostics in Condition-based Maintenance: A Review. The International Journal of Advanced Manufacturing Technology, 50(1-4), 297-313.
[https://doi.org/10.1007/s00170-009-2482-0]
- DOD (2008) Condition Based Maintenance Plus DoD Guidebook. Department of Defense.
-
Prajapati, A., Bechtel, J., & Ganesan, S. (2012) Condition Based Maintenance: A Survey. Journal of Quality in Maintenance Engineering, 18(4), 384-400.
[https://doi.org/10.1108/13552511211281552]
-
Ishak, S., Yaw, C. T., Koh, S. P., Tiong, S. K., Chen, C. P. & Yusaf, T. (2021) Fault Classification System for Switchgear CBM from an Ultrasound Analysis Technique Using Extreme Learning Machine, Energies, 14(6279), 1-21.
[https://doi.org/10.3390/en14196279]
-
Ayo-Imoru, R. M., & Cillier, A. C. (2018) A Survey of the State of Condition-Based Maintenance (CBM) in the Nuclear Power Industry, Annals of Nuclear Energy, 112, 177-188.
[https://doi.org/10.1016/j.anucene.2017.10.010]
-
Chen, Z. S., Yang, Y. M., & Hu, Z. (2012) A Technical Framework and Roadmap of Embedded Diagnostics and Prognostics for Complex Mechanical Systems in Prognostics and Health Management Systems, IEEE Transactions on Reliability, 61(2), 314-322.
[https://doi.org/10.1109/TR.2012.2196171]
- Coble, J. B. (2010) Merging Data Sources to Predict Remaining Useful Life - An Automated Method to Identify Prognostic Pararameters, University of Tennessee, 11-12.
- INCOSE (2015) INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities (4th ed.). Wiley.
-
Kim, S. H., Cohen, M. A., & Netessine, S. (2007) Performance Contracting in After-Sales Service Supply Chains. Management Science, 53, 1843–1858.
[https://doi.org/10.1287/mnsc.1070.0741]
-
Jablokowa, K. W., & Booth, D. E. (2006) The Impact and Management of Cognitive Gap in High Performance Product Development Organizations. Journal of Engineering and Technology Management, 23, 313-336.
[https://doi.org/10.1016/j.jengtecman.2006.08.003]
- Roth, N., Prieto, J., Lettice, F., Dvir, R., Penev, I., Tsanev, M., Evans, S., Young, K., & Schulte, T. (2001) A Performance Management System for New Product Development from a Reuse and Invention Perspective. IOS Press.
-
Juuso, E. K., & Lahdelma, S. (2013) Intelligent Performance Measures for Condition-based Maintenance. Journal of Quality in Maintenance Engineering, 19, 278-294.
[https://doi.org/10.1108/JQME-05-2013-0026]
- Cummins, R. A., & Gullone, E. (2000) Why We Should not Use 5-point Likert Scales: The Case for Subjective Quality of Life Measurement. Proceedings, Second International Conference on Quality of Life in Cities.
-
Yamada, Y., Sasaki, K., Imura, T., & Hori, Y. (2021) Design Method of Coils for Dynamic Wireless Power Transfer Considering Average Transmission Power and Installation Rate 2021 IEEE Southern Power Electronics Conference (SPEC).
[https://doi.org/10.1109/SPEC52827.2021.9709485]
-
Roh, J., Park, H. J., Lee, K. J., Hyeong, J., Kim, S., & Lee, B. (2018) Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning. Sensors (Basel), 18(1).
[https://doi.org/10.3390/s18010208]
-
Prisacaru, A., Palczynska, A., Gromala, P., Wu, B., Han, B., & Zhang, G. (2019) Accuracy of CMOS-Based Piezoresistive Stress Sensor for Engineering Applications of Thermal Loading Condition: Theoretical Review and Experimental Validation. IEEE Sensors Journal, 19(20), 9139-9148.
[https://doi.org/10.1109/JSEN.2019.2921406]
-
Pecht, M., Dube, M., Natishan, M., Williams, R., Banner, J., & Knowles, I. (2001) Evaluation of Built-In Test. IEEE Transactions on Aerospace and Electronic Systems, 37, 266-271.
[https://doi.org/10.1109/7.913684]
-
Bhatheja, K., Chaganti, S., Chen, D., Jin, X. R., Dao, C. C., Ren, J., Kumar, A., Correa, D., Lehmann, M., Rodriguez, T., Kingham, E., Knight, J. R., Dobbin, A., Herrin, S. W., & Garrity, D. (2022) Low Cost High Accuracy Stimulus Generator for On-chip Spectral Testing 2022 IEEE International Test Conference (ITC).
[https://doi.org/10.1109/ITC50671.2022.00063]
-
Sarteshnizi, I. T., Tavakkoli Khomeini, F., Khedri, B., & Samimi, A. (2022) Sensitivity Analysis of Driving Event Classification Using Smartphone Motion Data: Case of Classifier Type, Sensor Bundling, and Data Acquisition Rate. Journal of Intelligent Transportation Systems, 1-18.
[https://doi.org/10.1080/15472450.2022.2140048]
-
Boyle, R. S. J., & Body, R. (2021) The Diagnostic Accuracy of the Emergency Department Assessment of Chest Pain (EDACS) Score: A Systematic Review and Meta-analysis. Ann Emerg Med, 77(4), 433-441.
[https://doi.org/10.1016/j.annemergmed.2020.10.020]
-
Doi, T. (2021) Usability Textual Data Analysis: A Formulaic Coding Think-Aloud Protocol Method for Usability Evaluation. Applied Sciences, 11(15).
[https://doi.org/10.3390/app11157047]
-
Ma, Y., Oslebo, D., Maqsood, A., & Corzine, K. (2021) DC Fault Detection and Pulsed Load Monitoring Using Wavelet Transform-Fed LSTM Autoencoders. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(6), 7078-7087.
[https://doi.org/10.1109/JESTPE.2020.3019382]
-
Shen, T., Liang, X., Zhang, B., Yang, G., Li, D., Zu, J., & Pan, S. (2021) Transmission Line Safety Early Warning Technology Based on Multi-Source Data Perception. 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE).
[https://doi.org/10.1109/ICBASE53849.2021.00054]
-
He, C., Chen, Y. Y., Phang, C. R., Stevenson, C., Chen, I. P., Jung, T. P., & Ko, L. W. (2023) Diversity and Suitability of the State-of-the-Art Wearable and Wireless EEG Systems Review. IEEE J Biomed Health Inform, 27(8), 3830-3843.
[https://doi.org/10.1109/JBHI.2023.3239053]
-
Daniel, D. F., & Panetta, J. (2019). On Applying Performance Portability Metrics 2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC(P3HPC),
[https://doi.org/10.1109/P3HPC49587.2019.00010]
-
Mishra, A., Gupta, N., & Gupta, B. B. (2021) Defense Mechanisms against DDoS Attack Based on Entropy in SDN-cloud Using POX Controller. Telecommunication Systems, 77(1), 47-62.
[https://doi.org/10.1007/s11235-020-00747-w]
-
Song, H., Liang, H., Li, H., Dai, Z., & Yun, X. (2019) Vision-based Vehicle Detection and Counting System Using Deep Learning in Highway Scenes. European Transport Research Review, 11(1).
[https://doi.org/10.1186/s12544-019-0390-4]
-
Lawal, M. O. (2021) Tomato Detection Based on Modified YOLOv3 Framework. Sci Rep, 11(1), 1447.
[https://doi.org/10.1038/s41598-021-81216-5]
-
Tulbure, A. A., Tulbure, A. A., & Dulf, E. H. (2022) A Review on Modern Defect Detection Models Using DCNNs - Deep Convolutional Neural Networks. J Adv Res, 35, 33-48.
[https://doi.org/10.1016/j.jare.2021.03.015]
-
Chen, Y., Wang, M., Yao, Y., Zeng, C., Zhang, W., Yan, H., Gao, P., Fan, L., & Ye, D. (2023) Research on the Ozone Formation Sensitivity Indicator of Four Urban Agglomerations of China Using Ozone Monitoring Instrument (OMI) Satellite Data and Ground-based Measurements. Sci Total Environ, 869, 161679.
[https://doi.org/10.1016/j.scitotenv.2023.161679]
-
Lite, T. V., Grant, R. A., Nocedal, I., Littlehale, M. L., Guo, M. S., & Laub, M. T. (2020) Uncovering the Basis of Protein-protein Interaction Specificity with a Combinatorially Complete Library. Elife, 9.
[https://doi.org/10.7554/eLife.60924]
-
Ghoneim, S. S. M., Farrag, T. A., Rashed, A. A., El-Kenawy, E.-S. M., & Ibrahim, A. (2021) Adaptive Dynamic Meta-Heuristics for Feature Selection and Classification in Diagnostic Accuracy of Transformer Faults. IEEE Access, 9, 78324-78340.
[https://doi.org/10.1109/ACCESS.2021.3083593]
-
Tostmann, A., Bradley, J., Bousema, T., Yiek, W. K., Holwerda, M., Bleeker-Rovers, C., Ten Oever, J., Meijer, C., Rahamat-Langendoen, J., Hopman, J., van der Geest-Blankert, N., & Wertheim, H. (2020) Strong Associations and Moderate Predictive Value of Early Symptoms for SARS-CoV-2 Test Positivity Among Healthcare Workers, the Netherlands, March 2020. Euro Surveill, 25(16).
[https://doi.org/10.2807/1560-7917.ES.2020.25.16.2000508]
- 김상동, & 이상근 (2015) 지방재정 건전성지표의 개발 및 적용 : 경상북도 사례로. 지방정부연구, 18, 269-292.
-
Sudheesh, K. K., Asha, G., & Jagathnath Krishna, K. M. (2019) On the Mean Time to Failure of an Age-Replacement Model in Discrete Time. Communications in Statistics - Theory and Methods, 50(11), 2569-2585.
[https://doi.org/10.1080/03610926.2019.1672742]
-
Mousavi, M., Pourshaghaghi, H. R., Kumar, A., & Corporaal, H. (2023) MTTR Reduction of FPGA Scrubbing: Exploring SEU Sensitivity. Microprocessors and Microsystems, 101.
[https://doi.org/10.1016/j.micpro.2023.104841]
-
Huang, M., & Liu, Z. (2019) Research on Mechanical Fault Prediction Method Based on Multifeature Fusion of Vibration Sensing Data. Sensors (Basel), 20(1).
[https://doi.org/10.3390/s20010006]
-
Melnikova, E., Kabanov, A., Nikitin, S., Somova, M., Kharitonov, S., Otradnov, P., Kostyunina, O., Karpushkina, T., Martynova, E., Sermyagin, A., & Zinovieva, N. (2021) Application of Genomic Data for Reliability Improvement of Pig Breeding Value Estimates. Animals (Basel), 11(6).
[https://doi.org/10.3390/ani11061557]
-
Biasielli, M., Cassano, L., & Miele, A. (2020) An Approximation-based Fault Detection Scheme for Image Processing Applications. 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).
[https://doi.org/10.23919/DATE48585.2020.9116425]
-
Nayak, S., Kumar, C., & Tripathi, S. (2017) Enhancing Efficiency of the Test Case Prioritization Technique by Improving the Rate of Fault Detection. Arabian Journal for Science and Engineering, 42, 3307-3323.
[https://doi.org/10.1007/s13369-017-2466-6]
-
Liu, J., Pan, C., Lei, F., Hu, D., & Zuo, H. (2021) Fault Prediction of Bearings Based on LSTM and Statistical Process Analysis. Reliability Engineering & System Safety, 214.
[https://doi.org/10.1016/j.ress.2021.107646]
-
Krawczyk, S., & Szuba, M. (2023) Utilizing Simulation to Enhance Predictive Maintenance in Power Rails of Switch Gears by Analyzing Temperature Changes Under Varying Current Loads 2023 Progress in Applied Electrical Engineering (PAEE).
[https://doi.org/10.1109/PAEE59932.2023.10244394]
-
Sánchez-Barroso, G., & García Sanz-Calcedo, J. (2019) Application of Predictive Maintenance in Hospital Heating, Ventilation and Air Conditioning Facilities. Emerging Science Journal, 3(5), 337-343.
[https://doi.org/10.28991/esj-2019-01196]