한국해군과학기술학회
[ Article ]
Journal of the KNST - Vol. 7, No. 2, pp.114-117
ISSN: 2635-4926 (Print)
Print publication date 30 Jun 2024
Received 03 Jun 2024 Revised 15 Jun 2024 Accepted 29 Jun 2024
DOI: https://doi.org/10.31818/JKNST.2024.6.7.2.114

실시간 전장 시뮬레이션을 위한 시각 탐지 및 식별 모델링 제안

김동건 ; 현철* ; 김정 ; 이상욱
LIG넥스원 전장분석개발팀 수석연구원
Proposal of a Visual Detection and Identification Modeling for Real-time Battlefield Simulation
Dong Geon Kim ; Chul Hyun* ; Jeong Kim ; Sangwook Lee
1Principal researcher, Dept. of Battlefield Analysis and Development, LIG Nex1

Correspondence to: *Chul Hyun Dept. of Battlefield Analysis and Development, LIG Nex1 333 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea Tel: +82-31-5178-4293 Fax: +82-31-5179-7086 E-mail: chul.hyun@gmail.com

Ⓒ 2024 Korea Society for Naval Science & Technology

초록

본 논문에서는 교전 시뮬레이션 내부의 인간 요소 중, 시각을 이용한 탐지/식별에 대해서 실시간 시뮬레이션에 적용 가능한 모델링 방법론을 제시하였다. 영상을 기반으로 하는 탐지, 인지, 식별 확률 계산에 널리 쓰이는 Johnson 기준을 인간 시각에 적용하여 반영하였다. 탐지 범위 판단 모델, 탐지/식별 판단 모델, 표적 정보 추출 모델로 구성된 인간 시각 모델링을 수행하고 실시간 전장 시뮬레이션에 적용 가능하도록 하였다.

Abstract

This paper presents a methodology for modeling human visual detection and identification applicable to real-time simulations within engagement simulations. Johnson's criteria, widely used for calculating the probabilities of detection, recognition, and identification based on imagery, were applied to human vision. The human visual modeling consists of a detection range determination model, a detection/identification judgment model, and a target information extraction model, making it suitable for application in real-time battlefield simulations.

Keywords:

Real-time Battlefield Simulation, Human Visual Modeling, Detection/Identification, Spartial Resolution

키워드:

실시간 전장 시뮬레이션, 인간 시각 모델링, 탐지/식별, 공간분해능

References

  • K.M. Seo, T. G. Kim, H.S. Song, J. H. Kim, and S. M. Chung, “Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 1: Conceptual Model Design,” Journal of the Korea Institute of Military Science and Technology, Vol. 17, No. 2, pp. 223–234, 2014. [https://doi.org/10.9766/KIMST.2014.17.2.223]
  • K.M. Seo, C. Choi, and T. G. Kim, “Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 2: Detailed Model Design & Model,” Journal of the Korea Institute of Military Science and Technology, Vol. 17, No. 2, pp. 225–247, 2014. [https://doi.org/10.9766/KIMST.2014.17.2.235]
  • K. Bang and W. Choi, “Evaluation of Submarine’s Tactical Operations Using Heterogeneous Models,” 2015.
  • A. E. Opcin, A. H. Buss, T. W. Lucas and P. J. Sanchez, “Modeling Anti-air Warfare with Discrete Event Simulation and Analyzing Naval Convoy Operations,” 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, pp. 4048-4057, 2017. [https://doi.org/10.1109/WSC.2017.8248114]
  • John Johnson, “Analysis of Image Forming Systems,” in Image Intensifier Symposium, AD 220160 (Warfare Electrical Engineering Department, U.S. Army Research and Development Laboratories, Ft. Belvoir, Va., 1958), pp. 244–273.
  • J.W. Park, “Establishment of Test & Evaluation Criteria in the Military Electro-Optical/Infrared Devices,” Journal of the KIMST, Vol. 19, No. 5, pp. 613-617, 2016. [https://doi.org/10.9766/KIMST.2016.19.5.613]
  • D. Peric, B. Livada, M. Peric and S. Vujic, “Thermal Imager Range: Predictions, Expectations, and Reality,” Sensors, Vol.19, No.15, pp. 3313, 2019. [https://doi.org/10.3390/s19153313]
  • R. H. Vollmerhausen and E. Jacobs, “The Targeting Task Performance (TTP) Metric: A New Model for Predicting Target Acquisition Performance,” Tech. Rep. AMSEL-NV-TR-230, Modeling and Simulation Division, Night Vision and Electronic Sensors Directorate, U.S. Army CERDEC, Fort Belvoir, 2004. [https://doi.org/10.21236/ADA422493]
  • E. Brenner and F. W. Cornelissen, “Separate Simultaneous Processing of Egocentric and Relative Positions,” Vision Research, Vol. 40, pp. 2557-2563, 2000. [https://doi.org/10.1016/S0042-6989(00)00142-5]